PERHITUNGAN UKURAN RISIKO UNTUK MODEL KERUGIAN AGREGAT

Nadya Pratiwi, Aprida Siska Lestia, Nur Salam

Abstract


In the case of nonlife insurance, insurance companies are very potential to get losses if claims submitted by customers (policyholders) exceeds the reserves of budgeted claims. It is the risk that have to managed properly by insurance companies . One possible disadvantage is the aggregate loss model. The aggregate loss model is a random variable that states the total of all losses incurred in an insurance policy block. This kind of loss can be modeled using a collective risk approach where the number of claims is a discrete random variable and the size of claim is a continuous random variable. The purpose of this study is to determine risk measure of standard deviation premium principle, value at risk (VaR), and conditional tail expectation (CTE) of the aggregate loss model. Standard deviation premium principle risk measure of aggregate loss model is determined analytically by substituted it expected value and varians. Meanwhile, VaR risk measure is determined using numerical method by Monte Carlo method, then the quantile value and it confidence interval for the actual value will estimate. In the CTE calculation, based on the loss data obtained in the Monte Carlo method, the CTE value is estimated by calculating the average loss that exceeds the VaR value. If the data size is large enough, the CTE value estimation will converge to the actual value.

Keywords: Aggregate Loss Model, Standard Deviation Premium Principle, Value at Risk (VaR), Conditional Tail Expectation (CTE).


Full Text:

PDF

References


Al-Qomar, M.A., Saepudin, D., & Rohmawati, A.A. 2018. Pemodelan dan Simulasi Kebangkrutan Perusahaan Asuransi dengan Waktu Kedatangan Klaim Berdistribusi Pareto. E-Proceeding of Engineering, Bandung.

Bain, L.J. & Engelhardt, M. 1992. Introduction to Probability and Mathematical Statistics second edition. Duxbury Press, California.

Bowers, N.L., Gerber, H., Hickman, J., Jones, D., & Nesbitt, C. 1997. Actuarial Mathematics second edition. The Society of Actuaries, Illinois.

Diba, F., Saepudin, D., & Rohmawati, A.A. 2017. Pemodelan dan Simulasi Peluang Kebangkrutan Perusahaan Asuransi dengan Analisis Nilai Premi dan Ukuran Klaim Berdistribusi Eksponensial. Indo Journal on Computing, Bandung. Vol 2 No. 2: 1-10.

Hardy, M.R. 2006. An Introduction to Risk Measure for Actuarial Application. Society of Actuaries, United State America.

Klugman, S.A., Panjer, H.H., & Willmout, G.E. 2004. Loss Models From Data to Decision fourth edition. Society of Actuaries, Canada.

Sari, D.P. 2013. Penanganan Overdispersi Dengan Model Regresi Binomial Negatif I Pada Studi Kasus Penggolongan Resiko Jumlah Klaim Asuransi Kendaraan di Malaysia. Jurusan Teknik Elektronika, Fakultas Teknik Universitas Negeri Padang, Padang.

Shevchenko, P.V. 2010. Calculation of Aggregate Loss Distributions. The Journal of Operational Risk, Australia. Vol. 5 No. 2: 3-40.

Tse, Y.K. 2009. Nonlife Actuarial Models Theory, Methods and Evaluation. Cambridge University Press, New York.

Vremiro, R., Kurniati, E., & Gunawan, G. 2016. Penaksiran Peluang Kebangkrutan (Ruin) pada Kasus Besarnya Klaim Asuransi Berdistribusi Gamma. Jurnal Teori dan Terapan Matematika Universitas Islam Bandung. Vol. 15 No.1 : 45 - 51.

Walpole, R.E. 1995. Pengantar Statistika Edisi ke-3. PT. Gramedia Pustaka Utama. Jakarta.




DOI: https://doi.org/10.20527/epsilon.v14i1.2200

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 JURNAL MATEMATIKA MURNI DAN TERAPAN EPSILON

Indexed by:

          

 

EDITORIAL OFFICE 

           

 

 

 

Creative Commons License
JMMTE is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.