TEOREMA TITIK TETAP PADA RUANG NORM-𝟐 BERDIMENSI HINGGA

Moh Januar I Burhan

Abstract


In this paper, the fixed point theorem will be discussed in the space norm-2 (𝑋𝑋, ‖ ∙, ∙ ‖) dimension until which is an improvement of the fixed point theorem discussed by Gunawan in [2]. By defining the norm ‖ ∙ ‖1 * derived from norm-2 ‖ ∙, ∙ ‖, there is a convergence of sequences in space (𝑋𝑋, ‖ ∙ ‖1 *) and space (𝑋𝑋, ‖ ∙, ∙ ‖). These results will be used to prove the Fixed Point Theorem.
Kata kunci : norm - 2, norm, teorema titik tetap.

Keywords


norm - 2, norm, fixed point theorem.

Full Text:

PDF

References


H. Gunawan. The space of p-summable sequences and its natural n-norm, Bull. Austral. Math. Soc. 64 (2001), 137-147.

H. Gunawan and M. Mashadi. On finite-dimensional 2-normed space, Soochow J. Math. 27 (2001), 321-329.

H. Gunawan and M. Mashadi. On n-normed spaces, Int. J. Math. Sci. 27 (2001), 321-329.

E. Kreyszig. Introductory Functional Analysis with Application, John Wiley & Sons Inc, New York, 1978.

N. Young. An Introduction to Hilbert Space, Cambridge University Press, Cambridge, 1998.




DOI: https://doi.org/10.20527/epsilon.v9i1.3

Refbacks

  • There are currently no refbacks.


Copyright (c) 2015 EPSILON

Indexed by:

          

 

EDITORIAL OFFICE 

           

 

 

 

Creative Commons License
JMMTE is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.