TEOREMA TITIK TETAP PADA RUANG NORM-𝟐 BERDIMENSI HINGGA
Abstract
In this paper, the fixed point theorem will be discussed in the space norm-2 (𝑋𝑋, ‖ ∙, ∙ ‖) dimension until which is an improvement of the fixed point theorem discussed by Gunawan in [2]. By defining the norm ‖ ∙ ‖1 * derived from norm-2 ‖ ∙, ∙ ‖, there is a convergence of sequences in space (𝑋𝑋, ‖ ∙ ‖1 *) and space (𝑋𝑋, ‖ ∙, ∙ ‖). These results will be used to prove the Fixed Point Theorem.
Kata kunci : norm - 2, norm, teorema titik tetap.
Kata kunci : norm - 2, norm, teorema titik tetap.
Keywords
norm - 2, norm, fixed point theorem.
Full Text:
PDFReferences
H. Gunawan. The space of p-summable sequences and its natural n-norm, Bull. Austral. Math. Soc. 64 (2001), 137-147.
H. Gunawan and M. Mashadi. On finite-dimensional 2-normed space, Soochow J. Math. 27 (2001), 321-329.
H. Gunawan and M. Mashadi. On n-normed spaces, Int. J. Math. Sci. 27 (2001), 321-329.
E. Kreyszig. Introductory Functional Analysis with Application, John Wiley & Sons Inc, New York, 1978.
N. Young. An Introduction to Hilbert Space, Cambridge University Press, Cambridge, 1998.
DOI: https://doi.org/10.20527/epsilon.v9i1.3
Refbacks
- There are currently no refbacks.
Copyright (c) 2015 EPSILON
Indexed by:
EDITORIAL OFFICE
JMMTE is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.