INVERS TERGENERALISASI MOORE PENROSE

Mardiyana Mardiyana, Na'imah Hijriati, Thresye Thresye

Abstract


The generalized inverse is a concept for determining the inverse of a singular matrix and and  matrix which has the characteristic of the inverse matrix. There are several types of generalized inverse, one of which is the Moore-Penrose inverse. The matrix  is called Moore Penrose inverse of a matrix if it satisfies the four penrose equations and is denoted by . Furthermore, if the matrix  satisfies only the first two equations of the Moore-Penrose inverse and , then  is called the group inverse of  and is denoted by . The purpose of this research was to determine the group inverse of a non-diagonalizable square matrix using Jordan’s canonical form and Moore Penrose’s inverse of a singular matrix, also a non-square matrix using the Singular Value Decomposition (SVD) method. The results of this study are the sufficient condition for a matrix  to have a group inverse, i.e., a matrix  has an index of 1 if and only if the product of two matrices forming  is a full rank factorization and is invertible. Whereas for a singular matrix  and a non-square , the Moore-Penrose inverse can be determined using Singular Value Decomposition (SVD).

                                                           

Keywords: generalized matrix inverse, Moore Penrose inverse, group inverse, Jordan canonical form, Singular Value Decomposition.


Keywords


generalized matrix inverse, Moore Penrose inverse, group inverse, Jordan canonical form, Singular Value Decomposition

Full Text:

PDF

References


Anton, H., & Rorres, C. (2004). Aljabar Linier Elementer : Versi Aplikasi (R. Indriasari & I. Harmein (eds.); Edisi ke-8). Erlangga.

Ben-Israel, A., & Greville, T. N. E. (1976). Generalized Inverses: Theory and Applications. International Statistical Review / Revue Internationale de Statistique, 44(2), 301. https://doi.org/10.2307/1403291

Dewi, I., & Liliana, K. (2017). Membawa Matriks ke Dalam Bentuk Kanonik Jordan. Euclid, 2, 568–577.

Fletcher, R., & Sorensen, D. C. (1983). An Algorithmic Derivation of The Jordan Canonical Form. The Americal Mathematical Monthly, 90, 12–16.

Hourigan, J. S., & Mcindoo, L. V. (1998). A scientific Report on Singular Value Decomposition. 1–9. http://citeseerx.ist.psu.edu/viewdoc/summary?doi1651=10.1.1.42.

Meyer, C. D. (2000). Matrix Analysis and Applied Linear Algebra. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9780898719512

Piziak, R., & Odell, P. L. (2007). Matrix Theory: From Generalized Inverses to Jordan Form (1st ed.). Chapman and Hall/CRC. https://doi.org/https://doi.org/10.1201/9781420009934

Stoer, J., & Bulirsch, R. (2002). Introduction to Numerical Analysis. (2nd ed.). Springer- Verlag.

Weintraub, S. H. (2008). Jordan Canonical Form: Application to Differential Equations. In Synthesis Lectures on Mathematics and Statistics (Vol. 1, Issue 1). Morgan &cLaypool publishers. https://doi.org/10.2200/s00146ed1v01y200808mas002

Zekraoui, H., & Özel, C. (2017). Some matrix factorizations related to the generalized inverses. In Applied Mathematical Modelling, October 2017. https://www.researchgate.net/publication/320620520




DOI: https://doi.org/10.20527/epsilon.v15i2.3667

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 JURNAL MATEMATIKA MURNI DAN TERAPAN EPSILON

Indexed by:

          

 

EDITORIAL OFFICE 

           

 

 

 

Creative Commons License
JMMTE is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.