PEMODELAN PENYAKIT DIFTERI DI SUMATERA BARAT MENGGUNAKAN REGRESI ZERO INFLATED DAN REGRESI HURDLE

Fitri Mudia Sari, Pardomuan Robinson Sihombing

Abstract


Data that states the number of events in a certain period of time is called count data. Poisson regression is one of the regression models included in the application of GLM that can be used to model the count data. In Poisson regression, there are assumptions that must be met, namely the mean and variance of the response variables must be the same (equidispersion). Several models that are able to overcome overdispersion due to excess zero are the Zero Inflated model and the Hurdle model. This study examines the characteristics of parameter estimation in the modeling of quantified data that is overdispersed due to excess zero using the Zero Inflated Poisson (ZIP), Zero Inflated Negative Binomial (ZINB), Hurdle Poisson (HP) model and the Hurdle Negative Binomial (HNB) model in cases of diphtheria. in West Sumatra in 2018. Based on individual parameter testing and AIC values, the HP model provides better performance than the ZIP, ZINB, and HNB models. So the Hurdle Poisson model is better used in this case than other models

Keywords


excess zero, hurdle, overdispersion, poisson, zero inflated

Full Text:

PDF

References


Afri, L. A., Arcat. (2019), “Pemodelan Regresi Hurdle Negative Binomial Tersensor Pada Kasus Penyakit Difteri”, Jurnal Absis vol 2 no 1, 148-158.

Badan Pusat Statistik (2019), Provinsi Sumatera Barat dalam Angka 2019. Sumatera Barat: BPS Sumatera Barat.

Cameron, A.C., & Trivedi, P.K. (1998). Regression Analysis of Count Data. Cambridge: Cambridge University Press.

Cantoni, E., & Zedini, A. (2010). “A Robust Version of the Hurdle Model”. Journal of Statistical Planning and Inference, 141(3), 1214-1223.

Consul, P.C. & Famoye, F. (1992) “Generalized Poisson Regression Model”, Communications in Statistics - Theory and Methods, 21:1, 89-109

Cox, D.R. (1983). “Some Remarks on Over-Dispersion”. Biometrika, 70(1), 269 - 274.

Desjardins CD. (2013). Evaluating the Performance of Two Compet ing Models Of School Suspension Under Simulation-The Zero-Inflated Negative Binomial and the Negative Binomial Hurdle [disertasi]. Minnesota (US): Minnesota Universit y.

Dobson, J.A. (1983). An Introduction To Statistical Modelling, USA: Chapman & Hall/CRC.

Famoye, F., Wulu, J.T. and Singh, K.P. (2004). “On The Generalized Poisson Regression Model with an Application to Accident Data”. Journal of Data Science, 2 (2004) 287-295

Hilbe, J.M., (2011), Negative Binomial Regression. Second Edition, New York: Cambridge University Press.

Jamilatuzzahro, Caraka, R. E., dan Herliansyah, R. (2018), Aplikasi Generalized Linear Model pada R, Yogyakarta: Innosain.

Mullahy, J. (1986), “Specification and Testing of Some Modified Count Data Modified Count Data Models”. Journal of Econometrics.33: 341-365.

Rahayu, R.L., Asrof, A., Rustiana, S., Puspitasari, W., Suparman, Y., (2018), “Perbandingan Regresi Zero Inflated Negative Binomial dan Regresi Hurdle Negative Binomial pada Data Overdispersi (Studi Kasus: Kejadian Difteri di Indonesia)”, Jurnal Sains Matematika dan Statistika vol 4 no 1. 16-25.

Ramadhan, M.N. (2019), Pemodelan Jumlah Penyakit Kusta Di Provinsi Sulawesi Tenggara Menggunakan Metode Regresi Poisson Inverse Gaussian. Undergraduate thesis, Muhammadiyah University, Semarang.

Saffari, S.E., Adnan R. (2011), “Zero-Inflated Negative Binomial Regression Model with Right Censoring Count Data”, Journal of Materials Science and Engineering B. 1:551-554.




DOI: https://doi.org/10.20527/epsilon.v15i1.3676

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 JURNAL MATEMATIKA MURNI DAN TERAPAN EPSILON

Indexed by:

          

 

EDITORIAL OFFICE 

           

 

 

 

Creative Commons License
JMMTE is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.