MODEL MANGSA-PEMANGSA DENGAN FUNGSI RESPON HOLLING DAN PEMANENAN
Abstract
Keywords
Full Text:
PDFReferences
Jorgensen, S. E. (2008). AgricultureSystems. Ecosystem(2009). https://www.academia.edu/11299464/Ecosystem_Ecology
Henson, S. M., Brauer, F., & Castillo-Chavez, C. (2003). Mathematical Models in Population Biology and Epidemiology. In The American Mathematical Monthly (Vol. 110, Issue 3). https://doi.org/10.2307/3647954
Bairagi, N., Chattopadhyay, J., & Chaudhuri, S. (2009). Harvesting as a disease control measure in a eco-epidemiological system- A theoretical study. Mathematical Bioscieces, 134-144
Chakraborty, S., Pal, S., & Bairagi, N. (2012). Predator–prey interaction with harvesting: mathematical study with biological ramifications. Applied Mathematical Modelling, 4044-4059
Skalski, G. T., & Gilliam, J. F. (2001). Functional responses with predator interference: Viable alternatives to the Holling type II model. Ecology, 82(11), 3083–3092.
https://doi.org/10.1890/00129658(2001)082[3083:FRWPIV]2.0.CO;2
Jha PK, & Ghorai S (2017). Stability of Prey-Predator Model with Holling type Response Function and Selective Harvesting, 6(3). https://doi.org/10.4172/2168-9679.1000358
Henson, S. M., Brauer, F., & Castillo-Chavez, C. (2003). Mathematical Models in Population Biology and Epidemiology. In The American Mathematical Monthly (Vol. 110, Issue 3). https://doi.org/10.2307/3647954
Perko, L. (2001). Differential Equation and Dynamics, Thrid Edition. Verlag New York: Springer
Gantmacher, F. (2000). The Theory Of Matrices. New York: Chelsea Publishing Company
Bellomo, N., & Preziosi, L. (1993). Modelling mathematical Methods and Scientific Computation . New York: Springer-Verlag New York Inc
DOI: https://doi.org/10.20527/epsilon.v15i2.4593
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 JURNAL MATEMATIKA MURNI DAN TERAPAN EPSILON
Indexed by:
EDITORIAL OFFICE
JMMTE is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.