MODIFIKASI MODEL SEIR PADA PENYAKIT CAMPAK

Sofia Faridatun Nisa, Yuni Yulida, Faisal Faisal

Abstract


The epidemic models Susceptible, Exposed, Infected and Recovered (SEIR) are used for the spread of diseases that have a latent period (incubation period) which one is measles disease. Latent periods are entered into the Exposed class. Measles itself after the incubation period will experience clinical symptoms consisting of three stages, which are prodromal stage, eruption stage and healing stage. Due to these clinical symptoms, the SEIR model can be modified by dividing the Infected class into two classes, which are Infected Prodromal class and Infected Eruption class. While the healing stage enters Recovered class. The spread of measles can be made into an epidemic model with five classes which are  and . The purpose of this study is to explain the modification of the model, determine and analyze the model's local stability at the equilibrium point of the model and to interpret model simulations with multiple stability-eligible parameter values. The results obtained from this study are modification of  model which is  model. Based on model, two equilibrium points obtained which are disease-free equilibrium points and endemic equilibrium points, which are locally asymtotics stable with conditions. Model simulations are presented to support an explanation of model stability analysis based on stability-meeting parameters

Keywords


Measles, SEIR Model, Modification of SEIR Model, Equilibrium Point, Local Stability.

Full Text:

PDF

References


Anton, H., & Rorres, C. (2013). Elementary Linear Algebra: Applications Version (11th ed.). John Wiley & Sons Inc.

Ardilawati, N. M., Ratianigsih, R., & Jaya, A. I. (2015). Menentukan Tingkat Imunisasi Dan Pengobatan Optimal Dari Model Epidemik Penyakit Campak Dengan Metode Minimum Pontryagin. Jurnal Ilmiah Matematika Dan Terapan, 12(1), 64–73.

Astuti, V., Yulida, Y., & Thresye. (2021). Model Matematika Penyebaran Penyakit Diare dengan adanya Treatment. Jurnal Epsilon, 15(1), 46–57.

Bellomo, N., & Preziosi, L. (1995). Modelling Mathematical Methods and Scientific Computation. CRC press

Anton, H., & Rorres, C. (2013). Elementary Linear Algebra: Applications Version (11th ed.). John Wiley & Sons Inc.

Ardilawati, N. M., Ratianigsih, R., & Jaya, A. I. (2015). Menentukan Tingkat Imunisasi Dan Pengobatan Optimal Dari Model Epidemik Penyakit Campak Dengan Metode Minimum Pontryagin. Jurnal Ilmiah Matematika Dan Terapan, 12(1), 64–73.

Astuti, V., Yulida, Y., & Thresye. (2021). Model Matematika Penyebaran Penyakit Diare dengan adanya Treatment. Jurnal Epsilon, 15(1), 46–57.

Bellomo, N., & Preziosi, L. (1995). Modelling Mathematical Methods and Scientific Computation. CRC press.

Hasnawati, H., Ratianingsih, R., & Puspita, J. W. (2017). Analisis Kestabilan Model Matematika Pada Penyebaran Kanker Serviks Menggunakan Kriteria Routh-Hurwitz. Jurnal Ilmiah Matematika Dan Terapan, 14(1), 120–127. https://doi.org/10.22487/2540766x.2017.v14.i1.8360

Jannah, M., Ahsar Karim, M., & Yulida, Y. (2021). Analisis Kestabilan Model Seir Untuk Penyebaran Covid-19 Dengan Parameter Vaksinasi. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 15(3), 535–542. https://doi.org/10.30598/barekengvol15iss3pp535-542

Mariz, D. R. (2016). Diagnosis dan Tatalaksana Morbili. Jurnal Medula, 4(3), 40–45.

Mitku, S. N., & Koya, P. R. (2017). Mathematical Modeling and Simulation Study for the Control and Transmission Dynamics of Measles. American Journal of Applied Mathematics, 5(4), 99–107.

Momoh, A. A., Ibrahim, M. O., Uwanta, I. J., & Manga, S. B. (2013). Mathematical Model for Control of Measles Epidemiology. International Journal of Pure and Applied Mathematics, 87(5), 707–718.

Mutmainnah, Awalushaumi, L., & Aini, Q. (2019). Model Dinamika Penyebaran Penyakit Campak dengan Pengaruh Vaksinasi dan Penerapannya di Provinsi Nusa Tenggara Barat. E-Jurnal Matematika, 8(2), 112–121.

Perko, L. (2013). Differential Equations and Dynamical Systems (Third Edit). Springer-Verlag.

Saepudin, A. (2016). Menentukan Determinan Suatu Matriks Dengan Metode Chio. Jurnal Buana Matematika, 6(1), 25–29.

Utara, D. K. S. (2017). Mengenal Penyakit Campak. Dinas Kesehatan Provinsi Sumatera Utara.

Van den Driessche, P., & Watmough, J. (2002). Reproduction Numbers and Sub-Threshold Endemic Equilibria for Compartmental Models of Disease Transmission. Mathematical Biosciences, 180(1–2), 29–48.

Yulida, Y., & Karim, M. A. (2020). Pemodelan Matematika Penyebaran COVID-19 di Provinsi Kalimantan Selatan. Jurnal Binawakya, 14(10), 3257–3264. http://ejurnal.binawakya.or.id/index.php/MBI/article/view/572




DOI: https://doi.org/10.20527/epsilon.v16i1.4649

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 JURNAL MATEMATIKA MURNI DAN TERAPAN EPSILON

Indexed by:

          

 

EDITORIAL OFFICE 

           

 

 

 

Creative Commons License
JMMTE is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.