INTERIOR IDEAL FUZZY SEMIRING
Abstract
Semiring is one of the ring extensions, which eliminates the inverse axiom in the first operation. One of the topics on the semiring is the ideal interior. This study introduces the concept of the ideal interior semiring and the ideal interior fuzzy semiring. Further, it examined the properties of the ideal fuzzy semiring interior and the nature of the existence of the ideal interior semiring if the ideal fuzzy interior is given.
Keywords
Full Text:
PDFReferences
Abdurrahman, S. (2018). Interior Subgrup Fuzzy. Jurnal Fourier, 7(1), 13–21. https://doi.org/10.14421/fourier.2018.71.13-21
Abdurrahman, S. (2020a). Karakteristik subsemiring fuzzy. Jurnal Fourier, 9(1), 19–23. https://doi.org/10.14421/fourier.2020.91.19-23
Abdurrahman, S. (2020b). ω – fuzzy subsemiring.pdf. Jurnal Matematika, Sains, Dan Teknologi, 21(1), 1–10. https://doi.org/https://doi.org/10.33830/jmst.v21i1.673.2020
Ahsan, J., Mordeson, J. N., & Shabir, M. (2012a). Fundamental Concepts. In Fuzzy Semirings with Applications to Automata Theory (pp. 3–13). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-27641-5_1
Ahsan, J., Mordeson, J. N., & Shabir, M. (2012b). Fuzzy Ideals of Semirings. In Fuzzy Semirings with Applications to Automata Theory (pp. 15–29). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-27641-5_2
Ésik, Z. (2008). Iteration Semirings. In M. Ito & M. Toyama (Eds.), Developments in Language Theory (pp. 1–20). Springer Berlin Heidelberg.
Golan, J. S. (1999). Hemirings and Semirings: Definitions and Examples. In Semirings and their Applications (pp. 1–18). Springer Netherlands. https://doi.org/10.1007/978-94-015-9333-5_1
Jezewski, M., Czabanski, R., & Leski, J. (2017). Introduction to Fuzzy Sets. In P. Prokopowicz, J. Czerniak, D. Mikołajewski, Ł. Apiecionek, & D. Ślȩzak (Eds.), Theory and Applications of Ordered Fuzzy Numbers: A Tribute to Professor Witold Kosiński (pp. 3–22). Springer International Publishing. https://doi.org/10.1007/978-3-319-59614-3_1
Jian-ming, Z., & Xue-ling, M. A. (2008). On Fuzzy Interior Ideals in Semigroups. Journal of Mathematical Research & Exposition, 28(1), 103–110. https://doi.org/10.3770/j.issn
Kuroki, N. (1982). Fuzzy Semiprime Ideals in Semigroup. Fuzzy Sets and Systems, 8(1), 71–79. https://doi.org/https://doi.org/10.1016/0165-0114(82)90031-8
Mandal, D. (2014). Fuzzy Ideals and Fuzzy Interior Ideals in Ordered Semirings. Fuzzy Inf. Eng, 6, 101–114. http://jmre.dlut.edu.cn
N. Mordeson, J., R. Bhutani, K., & Rosenfeld, A. (2005). Fuzzy Subsets and Fuzzy Subgroups. 39, 1–39. https://doi.org/10.1007/10936443_1
Nasehpour, P. (2020). Some remarks on semirings and their ideals. Asian-European Journal of Mathematics, 13(1), 1–14. https://doi.org/10.1142/S1793557120500023
Rosenfeld, A. (1971). Fuzzy groups. Journal of Mathematical Analysis and Applications, 35(3), 512–517. https://doi.org/10.1016/0022-247X(71)90199-5
Sung, M. H., Young, B. J., & Meng, J. (1995). Fuzzy interior ideals in semigroups 1995.pdf. Indian J. Pure Appl. Math, 26(9), 859–863.
Zadeh, L. A. (1965). Fuzzy Sets. Information and Control, 8(3), 338–353. https://doi.org/https://doi.org/10.1016/S0019-9958(65)90241-X
DOI: https://doi.org/10.20527/epsilon.v15i2.4894
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN
Indexed by:
EDITORIAL OFFICE
JMMTE is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.