BIFURKASI MUNDUR PADA MODEL EPIDEMI SEIV DENGAN LAJU INSIDENSI NONLINEAR

Gunawan Gunawan

Abstract


In this research, an SEIV epidemic model with vaccination, horizontal and vertical transmission, and nonlinear incidence rate is formulated. Local stability and bifurcation analysis in this model is presented in terms of the basic reproduction number R0. This model exhibits a backward bifurcation possibility, that is, the appearance of two endemic equilibria although the basic reproduction number R0 is less than the threshold 1.

Keywords


backward bifurcation, SEIV epidemic model, nonlinear incidence rate

Full Text:

PDF

References


Castillo-Chavez, C. dan Song, B., 2004, Dynamical Models of Tuberculosis and Their Applications, Mathematical Biosciences and Engineering, 1, 2, 361 – 404.

. Castillo-Chavez, C., Feng, Z., Huang W., 2001, On the Computation of R0 and its Role on Global Stability, http://math.la.asu.edu/~chavez/CCCPUB/, diakses pada tanggal 26 Nopember 2012.

. Diekmann, O. dan Heesterbeek, J.A.P., 2000, Mathematical Epidemiology of Infectioun Diseases: Model Building, Analysis and Interpretation, Wiley, New York.

. Gunawan, 2014, Analisis Kestabilan Lokal dan Bifurkasi pada Model Epidemi SEIV dengan Vaksinasi dan Penularan Penyakit secara Vertikal, Tesis tidak diterbitkan, Yogyakarta: Pascasarjana Matematika FMIPA Universitas Gadjah Mada.

. Gunawan, 2015, Analisis Bifurkasi pada Model Epidemi SEIV dengan Laju Insidensi Nonlinear pada Penyakit Mematikan yang Menular secara Horizontal dan Vertikal, Laporan Penelitian tidak dipublikasikan, Banjarmasin: STKIP PGRI Banjarmasin.

. Hethcote, H.W., 2000, The Mathematics of Infectious Diseases, SIAM Review, 42, 4, 599 – 653.

. Kuznetsov, Y.A., 1998, Elements of Applied Bifurcation Theory, Second Edition, Springer-Verlag, New York.

. Li, L., Sun, G., Jin, Z., 2010, Bifurcation and Chaos in an Epidemic Model with Nonlinear Incidence Rates, Applied Mathematics and Computation, 216, 1226 - 1234

. Long, D. dan Xiang, Z., 2011, On the study of an SEIV epidemic model concerning vaccination and vertical transmission, Journal of Applied Mathematics & Bioinformatics, 1, 1, 21 – 30.

. Luenberger, D.G., 1979, Introduction to Dynamic Systems: Theory, Models and Applications, John Wiley & Sons, New York.

. Perko, L., 2001, Differential Equations and Dynamical System, Third Edition, Springer-Verlag, New York.

. Van den Driessche, P. dan Watmough, J., 2000, A Simple SIS Epidemic Model with a Backward Bifurcation. J. Math. Biol. 40, 525–540.

. Wiggins, S., 2003, Introduction of Applied Nonlinear Dynamical Systems and Chaos Second Edition, Springer-Verlag, New York.

. Yayasan Spiritia, 2013, Profilaksis Pascapajanan, http://www.spiritia.or.id/li/ bacali.php?lino=156, diakses pada tanggal 30 Desember 2013.




DOI: https://doi.org/10.20527/epsilon.v10i1.51

Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 JURNAL MATEMATIKA MURNI DAN TERAPAN EPSILON

Indexed by:

          

 

EDITORIAL OFFICE 

           

 

 

 

Creative Commons License
JMMTE is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.