BILANGAN INVERS DOMINASI TOTAL PADA GRAF BUNGA DAN GRAF TRAMPOLIN
Abstract
Full Text:
PDFReferences
Chartrand, G., Lesniak, L., & Zhang, P. (2016). Graphs & Digraphs, Sixth Edition. https://books.google.com/books?hl=nl&lr=&id=K6-FvXRlKsQC&pgis=1
Febrianti, A. F., Kiftiah, M., & F.Fran. (2019). Bilangan Dominasi Invers pada Graf Ular Segitiga, Ular Segitiga Ganda, Ular Segiempat, Ular Segiempat Ganda dan Graf Pembangunnya. Bimaster: Buletin Ilmiah Matematika, Statistika Dan Terapannya, 08(4), 917–926
Gallian, J. A. (2007). A dynamic survey of graph labeling. Electronic Journal of Combinatorics, 1(DynamicSurveys), 1–180.
Kaleeswari, C., & Sathya, K. (2020). Inverse Domination And Inverse Total Domination In Digraph. International Journal of Mathematics Trends and Technology, 66(3), 12–17. https://doi.org/10.14445/22315373/ijmtt-v66i3p503
Kauser, S. A., Khan, A., & Parvathi, M. S. (2020). Inverse Domination and Inverse Total Domination for an Undirected Graph. International Journal of Mathematics Trends and Technology (IJMTT), 66(3), 65–74. https://doi.org/10.17654/dm023020065
Kulli, V. R. (2015). The total dominating graph. Annals of Pure and Applied Mathematics, 10(1), 123–128.
Kulli, V. R. (2016a). Graphs with Equal Total Domination and Inverse Total Domination Numbers. Journal of Mathematics And Its Applications, 04(1-B), 175–179. https://doi.org/10.1080/02522667.2017.1379233
Kulli, V. R. (2016b). Inverse Total Domination in the Corona and Join of Graphs. Journal of Computer and Mathematical Sciences, 7(2), 61–64.
Kulli, V. R. & Iyer, R. R. (2007). Inverse total domination in graphs. Journal of Discrete Mathematical Sciences and Cryptography, 10(5), 613–620. https://doi.org/10.1080/09720529.2007.10698143
Munir, R. (2010). Matematika Diskrit. Informatika Bandung, 281–308.
Muthuraj, R. & Revathi, S. (2021). Inverse domination on multi fuzzy graph. Journal of Mathematical and Computational Science, 11(5), 5252–5266. https://doi.org/10.28919/jmcs/5943
Scheinerman, E. R. & Ullman, D. H. (1997). Fractional Graph Theory A Rational Approach to the Theory of Graphs. Notes, 211. https://books.google.co.uk/books?hl=en&lr=&id=zzFxD8kPWigC&oi=fnd&pg=PP1&dq=graph+theory+cycle+gamma+index&ots=yUk8oRpRra&sig=TfioIxIdcskszl7GP05u9fu3IyA#v=onepage&q&f=false%0Ahttp://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Fractional+Graph+
Kulli V.R & Sigarkanti, S.C. (1991). Inverse Domination in Graphs. Nat. Acad. Sci. Lett, 14(12), 473–475.
Vaidya, S. K., & Shah, N. H. (2013). Prime cordial labeling of some wheel related graphs. Malaya Journal of Matematik, 4(1), 148–156.
DOI: https://doi.org/10.20527/epsilon.v16i1.5160
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN
Indexed by:
EDITORIAL OFFICE
JMMTE is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.