BILANGAN INVERS DOMINASI TOTAL PADA GRAF BUNGA DAN GRAF TRAMPOLIN

Febby Desy Lia, Nilamsari Kusumastuti, Fransiskus Fran

Abstract


Given a simple, finite, undirected and contains no isolated vertices graph , with  is the set of vertices in  and  is the set of edges in . The set  is called the dominating set in  if for every vertex of  is adjacent to at least one vertex in . The set  is called the total dominating set in graph  if for every vertex in  is adjacent to at least one vertices in . If  is the total domination set with minimum cardinality of the graph  and  contains another total domination set, for example , then  is called the inverse set of total domination respect to . The minimum cardinality of an inverse set of total domination is called the inverse of total domination number which is denoted by .The set of domination and total domination is not singular. A graph that has a total domination set does not necessarily have a inverse total domination set. In this study, exact values are found of , and  and,, n is even and , where be a flower graph and T<span style='font-size:10.0pt;mso-ansi-font-siz

Full Text:

PDF

References


Chartrand, G., Lesniak, L., & Zhang, P. (2016). Graphs & Digraphs, Sixth Edition. https://books.google.com/books?hl=nl&lr=&id=K6-FvXRlKsQC&pgis=1

Febrianti, A. F., Kiftiah, M., & F.Fran. (2019). Bilangan Dominasi Invers pada Graf Ular Segitiga, Ular Segitiga Ganda, Ular Segiempat, Ular Segiempat Ganda dan Graf Pembangunnya. Bimaster: Buletin Ilmiah Matematika, Statistika Dan Terapannya, 08(4), 917–926

Gallian, J. A. (2007). A dynamic survey of graph labeling. Electronic Journal of Combinatorics, 1(DynamicSurveys), 1–180.

Kaleeswari, C., & Sathya, K. (2020). Inverse Domination And Inverse Total Domination In Digraph. International Journal of Mathematics Trends and Technology, 66(3), 12–17. https://doi.org/10.14445/22315373/ijmtt-v66i3p503

Kauser, S. A., Khan, A., & Parvathi, M. S. (2020). Inverse Domination and Inverse Total Domination for an Undirected Graph. International Journal of Mathematics Trends and Technology (IJMTT), 66(3), 65–74. https://doi.org/10.17654/dm023020065

Kulli, V. R. (2015). The total dominating graph. Annals of Pure and Applied Mathematics, 10(1), 123–128.

Kulli, V. R. (2016a). Graphs with Equal Total Domination and Inverse Total Domination Numbers. Journal of Mathematics And Its Applications, 04(1-B), 175–179. https://doi.org/10.1080/02522667.2017.1379233

Kulli, V. R. (2016b). Inverse Total Domination in the Corona and Join of Graphs. Journal of Computer and Mathematical Sciences, 7(2), 61–64.

Kulli, V. R. & Iyer, R. R. (2007). Inverse total domination in graphs. Journal of Discrete Mathematical Sciences and Cryptography, 10(5), 613–620. https://doi.org/10.1080/09720529.2007.10698143

Munir, R. (2010). Matematika Diskrit. Informatika Bandung, 281–308.

Muthuraj, R. & Revathi, S. (2021). Inverse domination on multi fuzzy graph. Journal of Mathematical and Computational Science, 11(5), 5252–5266. https://doi.org/10.28919/jmcs/5943

Scheinerman, E. R. & Ullman, D. H. (1997). Fractional Graph Theory A Rational Approach to the Theory of Graphs. Notes, 211. https://books.google.co.uk/books?hl=en&lr=&id=zzFxD8kPWigC&oi=fnd&pg=PP1&dq=graph+theory+cycle+gamma+index&ots=yUk8oRpRra&sig=TfioIxIdcskszl7GP05u9fu3IyA#v=onepage&q&f=false%0Ahttp://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Fractional+Graph+

Kulli V.R & Sigarkanti, S.C. (1991). Inverse Domination in Graphs. Nat. Acad. Sci. Lett, 14(12), 473–475.

Vaidya, S. K., & Shah, N. H. (2013). Prime cordial labeling of some wheel related graphs. Malaya Journal of Matematik, 4(1), 148–156.




DOI: https://doi.org/10.20527/epsilon.v16i1.5160

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN

Indexed by:

          

 

EDITORIAL OFFICE 

           

 

 

 

Creative Commons License
JMMTE is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.