POLINOMIAL CHEBYSHEV PADA SYARAT BATAS SERAP GELOMBANG AKUSTIK DUA DIMENSI
Abstract
Keywords
Full Text:
PDFReferences
Brunner H dan Han H. 2014. Artificial Boundary Condition and Finite Difference Approximations for A Time-Fractional Wave Equationon on A two-dimensional unbounded spatial domain. Journal of Computational Physics,276: 541-562
Higdon R. 1987. Numerical absorbing boundary conditions for wave equation. Math. Comp. 49. 65–90
Hu, J., dan Jia X. 2016. Numerical Modeling of Seismic Wave Using Frequency-Adaptive Meshes. Journal of Applied Geophysics. 131:41-53
Lin X dan Yu X. 2015. A finite difference method for effective treatment of mild-slope wave equation subject to non-reflecting boundary conditions. Applied Ocean Research, 53: 179-189
Mousavi, M. R. Karimi, M. dan Jamshidi, A. 2016. Probability Distribution of Acoustic Scattering from Slightly Rough Sea Surface. Ocean Engineering, 112: 134-144
Mason J.C dan Handscomb D. 2002. Chebyshev Polynomials. A CRC Press Company. Florida
Shiddiq, M. Mahfuzh. 2011. Syarat batas serap pada gelombang akustik dua dimensi. Jurnal Matematika Murni dan Terapan Epsilon. 05 (2)
Shiddiq, M. Mahfuzh. 2013. Numerical solution of absorbing boundary conditions on two dimensional acoustic wave. Jurnal Matematika Murni dan Terapan Epsilon. 07 (1)
Shiddiq, M. 2015. Numerical Solution of Absorbing Boundary Condition in Padé Approximation. The 2015 International Conference on Mathematics, Its Application, and Mathematics Education. Yogyakarta.
Rowley C and Colonius T. 2000. Discretely nonreflecting boundary condition for linear hyperbolic system. J. Comput. Phys. 15. 500–538
DOI: https://doi.org/10.20527/epsilon.v10i1.52
Refbacks
- There are currently no refbacks.
Copyright (c) 2016 JURNAL MATEMATIKA MURNI DAN TERAPAN EPSILON
Indexed by:
EDITORIAL OFFICE
JMMTE is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.