SOLUSI PERSAMAAN DIFERENSIAL FRAKSIONAL LINIER HOMOGEN DENGAN METODE MITTAG-LEFFLER

Helfa Oktafia Afisha, Yuni Yulida, Nurul Huda

Abstract


The classical calculus only studies derivatives as well as differential equations of integers, whereas for non-integral integers and differential equations are not included. Thus the concept of fractional calculus, which studies the integral and non-integral order of abbreviated diferintegral including fractional differential equations (PDF). In this paper we present a method for obtaining a homogeneous linear PDF solution built in the Mittag-Leffler function in the form of a series 𝑦𝑦 (π‘₯π‘₯) = 𝐸𝐸αα (𝑏𝑏𝑏 Ξ±Ξ±) = τ€·π‘π‘π‘˜π‘˜π‘₯π‘₯π‘˜π‘˜π‘˜ Ξ“ (π‘˜π‘˜π‘˜π‘˜ + 1) βˆžπ‘˜π‘˜ = 0 This series converges for π‘₯π‘₯ at τ‰€-1𝑏𝑏, 1𝑏𝑏τ‰. The derivative search of 𝑦𝑦 (π‘₯π‘₯), is done by deriving each term from 𝑦𝑦 (π‘₯π‘₯) using the definition of Caputo derivative followed by determining the coefficient π‘π‘π‘˜π‘˜ to obtain the PDF solution.

Keywords


Fractional Calculus, Mittag-Leffler Function and Fractional Differential Equations

Full Text:

PDF

References


Arfken, G.B. dan Hans J.W. 2005. Mathematical Methods for Physicist. Elsevier Academic Press, United States of America.

Boas, M.L. 2006. Mathematical Methods in the Physical Sciences. DePaul University, United States of America.

Bologna, Mauro. 2007. Short Introduction to Fractional Calculus, Arica, Chile.

Gorenflo, R. and Mainardi, F. 1997. Fractional calculus: integral and differential equations of fractional orde,” in Fractals Fractional Calculus in Continuum Mechanics”, A. Carpinteri and F. Mainar, Eds., pp.223–276, Springer, New York, NY, USA.

Kaczorek, T. 2008. Fractional Positive Continuous-Time Linier Systems And Their Reachability. Int J. Appl. Math. Comput. Sci., 2008, Vol. 18, No. 2. 223-228. DOI: 10.2478/v10006-008-0020-0.

Kisela, T. 2008. Fractional Differential Equations and Their Applications. Tesis. Program diploma, BRNO University of Technology.

Miller, K. S and Ross, B. 1993.An Introduction to the Fractional Calculus and Fractional Differential Equations,JohnWiley & Sons, New York, NY, USA.

Podlubny, I. 1999. Fractional Differential Equations, Academic Press, New York, NY, USA.

Purcel, E. J, et al. 2008. Kalkulus dan Geometri Analitis Jilid 2. Edisi Kelima. Erlangga, Jakarta.

Purcel, E. J, & Vanberg, D. 1987. Kalkulus Jilid 1. Edisi Kedelapan. Erlangga, Jakarta.

Rida, S.Z & Arafa, A. A. M., 2011. New Method for Solving Linear Fractional Differential Equations,”International Journal of Differential Equations, Volume 2011, Article ID 814132, 8 pages.

Siang, J.J. 2002. Matematika Diskrit dan Aplikasinya pada Ilmu Komputer. ANDI, Yogyakarta.

Stewart, James. 2010. Kalkulus. Edisi Kelima. (Terjemahan Chriswan Sungkono). Salemba Teknika, Jakarta.




DOI: https://doi.org/10.20527/epsilon.v10i1.53

Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 JURNAL MATEMATIKA MURNI DAN TERAPAN EPSILON

Indexed by:

Β  Β Β Β Β  Β  Β 

Β 

EDITORIAL OFFICEΒ 

Β  Β  Β  Β  Β  Β 

Β 

Β 

Β 

Creative Commons License
JMMTE is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Β 

Β 

Β 

Β