PERKIRAAN SELANG KEPERCAYAAN UNTUK NILAI RATA-RATA PADA DISTRIBUSI POISSON

Randy Toleka Ririhena, Nur Salam, Dewi Sri Susanti

Abstract


Confidence interval is an interval between two value, where we believe that the parameter value lay within those interval. To express it, approximate interval were conducted. If the parameter value is unknown, probability will be use rather than exact value. Approximation that conduct express probability that an interval contain parameter value that we estimate. One of parameter value to compute is mean. One of well-known distribution is Poisson ditribution. The purpose of this study is to find approximate interval for the mean of random variable with Poisson distribution. The result of research is confidence interval for poisson distribution by using pivotal quantity method. Based on pivotal quantity method, approximate interval for the mean of poisson distribution with the size of a large sample is
𝑃𝑃 τ‰ˆ 𝑋𝑋τ€΄€βˆ’ 𝑍𝑍𝛼𝛼/2 τ€Ά§π‘‹π‘‹τ€΄€ 𝑛𝑛 < πœ‡πœ‡ < 𝑋𝑋τ€΄€ + 𝑍𝑍𝛼𝛼/2 τ€Ά§π‘‹π‘‹τ€΄€ 𝑛𝑛 τ‰‰ = 1βˆ’ 𝛼𝛼


Keywords


Confidence interval (1βˆ’ 𝛼𝛼), mean, Poisson distribution, pivotal quantity method.

Full Text:

PDF

References


Bain, L.J. 1991. Introduction To Probability and Mathematical Statistic. University of Missouri-Rolla. California.

Herrhyanto, Nar. 2013. Statistika Inferensial Secara Teoritis. Yrama Widya. Bandung.

Purcell,Edwin J., & Varberg, Dale, 1994. Kalkulus dan Geometri Analitis Jilid 2, Edisi kelima. Erlangga. Jakarta.

Sahoo, P. 2008. Probability and Mathematical Statistic. University of Louisuille. USA.

Sudjana. 2005. Metode Statistika. Tarsito. Bandung.

Walpole, E. R. 1995. Pengantar Statistika. Edisi ke-3. Gramedia Jakarta.




DOI: https://doi.org/10.20527/epsilon.v10i1.54

Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 JURNAL MATEMATIKA MURNI DAN TERAPAN EPSILON

Indexed by:

Β  Β Β Β Β  Β  Β 

Β 

EDITORIAL OFFICEΒ 

Β  Β  Β  Β  Β  Β 

Β 

Β 

Β 

Creative Commons License
JMMTE is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Β 

Β 

Β 

Β