ANALISIS KESTABILAN DAN SOLUSI NUMERIK PADA MODEL SEIR UNTUK PENYAKIT TUBERKULOSIS

Azkia Khairal Jamil, Yuni Yulida, Muhammad Ahsar Karim

Abstract


One of the infectious diseases that can be modelled into the SEIR model is Tuberculosis (TB), this is because TB has a bacterial incubation period, so it is at this time that a person enters the exposed subpopulation. TB is divided into two types, namely latent TB and active TB. This study aims to explain the formation of the SEIR Model for the Spread of Tuberculosis, determine the equilibrium point and Basic Reproductive Numbers on the SEIR Model for the Spread of Tuberculosis, analyze the stability of the SEIR Model for the spread of Tuberculosis at the equilibrium point, and make numerical simulations. The result of this research is the formation of a mathematical model on the spread of Tuberculosis, and from the model obtained two equilibrium points, namely the disease-free equilibrium point and the endemic equilibrium point. Then the basic reproduction number ( ) was found through the Next Generation Matrix. Furthermore, the stability analysis was carried out at the disease-free equilibrium point and it was found that the local asymptotic stable model with , while at the endemic equilibrium point it was found that the local asymptotic stable model with . Numerical simulations are presented to show numerical solutions and strengthen the explanation of the stability analysis of the model using the fourth-order Runge-Kutta method with parameters that meet the stability requirements.


Keywords


Tuberculosis, SEIR Model, Equilibrium, Stability analysis, Numerical simulation.

Full Text:

PDF

References


Annas, S., Isbar Pratama, M., Rifandi, M., Sanusi, W., & Side, S. (2020). Stability analysis and numerical simulation of SEIR model for pandemic COVID-19 spread in Indonesia. Chaos, Solitons and Fractals, 139. https://doi.org/10.1016/j.chaos.2020.110072

Anton, H., Rorres, C., & Kaul, A. (2019). Elementary Linear Algebra Applications Version (12th ed.). Wiley.

Astuti, V., Yulida, Y., & Thresye. (2021). Model Matematika Penyebaran Penyakit Diare dengan adanya Treatment. Jurnal Epsilon, 15(1), 46–57.

Bellomo, N., & Preziosi, L. (1995). Modelling mathematical Methods and Scientific Computation. Springer-Verlag New York Inc.

Braun, M. (2013). Diffrential Equations and Their Application. In Journal of Chemical Information and Modeling (Vol. 53, Issue 9).

Das, K., Murthy, B. S. N., Samad, S. A., & Biswas, M. H. A. (2021). Mathematical transmission analysis of SEIR tuberculosis disease model. Sensors International, 2(April), 100120. https://doi.org/10.1016/j.sintl.2021.100120

Frahm, M., Goswami, N. D., Owzar, K., Hecker, E., Mosher, A., Cadogan, E., Nahid, P., Ferrari, G., & Stout, J. E. (2011). Discriminating between latent and active tuberculosis with multiple biomarker responses. Tuberculosis, 91(3), 250–256. https://doi.org/10.1016/j.tube.2011.02.006

Godio, A., Pace, F., & Vergnano, A. (2020). Godio-2020-SEIR Modeling of the Italian Epide1.pdf.

Hananti, C. N., & Mu’tamar, K. (2017). Analisis Model SIR Penyebaran Demam Berdarah Dengue Menggunakan Kriteria Routh-Hurwitz. Jurnal Universitas Riau, 1, 1–13.

Kemenkes RI. (2018). Tuberkulosis ( TB ). In Tuberkulosis (Vol. 1, Issue april).

Putra, Z. A., & Abidin, S. A. Z. (2020). Application of SEIR Model in Covid-19 and The Effect of Lockdown on Reducing The Number of Active Case. Indonesian Journal of Science and Technology, 2, 185–192.

Ramadhan, M. R., Waluya, S. B., & Kharis, M. (2018). Pemodelan Matematika Penyebaran Penyakit Tuberkulosis dengan Strategi DOTS. Ujm, 1(2252), 125–130.

Ridwan, M. R., & Hadi, A. (2019). Penggunaan dan Pengembangan Model Epidemi SIR pada Penyebaran Penyakit Tuberkulosis di Sulawesi Selatan. Jurnal Matematika Dan Statistika Serta Aplikasinya, 7(2), 37–44.

Sudiarta, I. W. (2019). Metode Numerik. Arga Puji Press.

Van den Driessche, P., & Watmough, J. (2002). Reproduction Numbers and Sub-Threshold Endemic Equilibria for Compartmental Models of Disease Transmission. Mathematical Biosciences, 180(1–2), 29–48.

Wiggins, S. (2003). Introduction to Applied Nonlinear Dynamical Systems and Chaos. In Introduction to Applied Nonlinear Dynamical Systems and Chaos (Issue January 2003). https://doi.org/10.1007/b97481

Yang, Z., Zeng, Z., Wang, K., Wong, S. S., Liang, W., Zanin, M., Liu, P., Cao, X., Gao, Z., Mai, Z., Liang, J., Liu, X., Li, S., Li, Y., Ye, F., Guan, W., Yang, Y., Li, F., Luo, S., … He, J. (2020). Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions. Journal of Thoracic Disease, 12(3), 165–174. https://doi.org/10.21037/jtd.2020.02.64




DOI: https://doi.org/10.20527/epsilon.v17i1.6403

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN

Indexed by:

          

 

EDITORIAL OFFICE 

           

 

 

 

Creative Commons License
JMMTE is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.