PEMODELAN MATEMATIKA PENYEBARAN COVID-19 DENGAN MODEL SVEIR

Gian Septiansyah, Muhammad Ahsar Karim, Yuni Yulida

Abstract


Coronavirus disease 2019 or also known as Covid-19 is a disease caused by a type of coronavirus called Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) or better known as the corona virus. Covid-19 become a pandemic since 2020 and has been widely studied, one of which is in mathematical modeling. In this study, the spread of Covid-19 is modeled using the SVEIR (Susceptible, Vaccination, Exposed, Infected, and Recovered) model. The purpose of this study explains the formation of the Covid-19 SVEIR model, determines the equilibrium point, determines the basic reproduction number, and analyzes the stability of the Covid-19 SVEIR model. The purpose of this study explains the formation of the Covid-19 SVEIR model, determines the equilibrium point, the basic reproduction number, and analyzes the stability of the Covid-19 SVEIR model. The result of this study is to explain the formation of the Covid-19 SVEIR model and obtained two equilibrium points, the disease-free equilibrium point and the endemic equilibrium point. Furthermore, the basic reproduction number  is obtained through the Next Generation Matrix method. The results of the stability analysis at the disease-free equilibrium point were locally asymptotically stable with conditions  while at the endemic equilibrium point local asymptotically stable with conditions . The natural death rate is greater than the effective contact rate. A numerical simulation is presented to show a comparison spread of Covid-19 by providing different levels of vaccine effectiveness using the Runge-Kutta Order method.

Keywords


Mathematical Modeling; Covid-19; SVEIR Model; Vaccine Effectiveness

Full Text:

PDF

References


Afwan, M. I., & Helma, H. (2021). Pemodelan Matematika Penyebaran Penyakit Covid-19 dengan Menggunakan Model SIRS. Journal of Mathematics UNP, 6(2), 34–40.

Al-Hussein, A.-B., & Tahir, F. (2020). Epidemiological Characteristics of COVID-19 Ongoing Epidemic in Iraq. Bulletin of the World Health Organization. Supplement. https://doi.org/10.2471/BLT.20.257907

Anderson, R. M., & May, R. M. C. (1992). Infectious Diseases of Humans: Dynamics and Control. Oxford University Press.

Anton, H., Rorres, C., & Kaul, A. (2019). Elementary Linear Algebra. Wiley.

Bellomo, N., & Preziosi, L. (1994). Modelling Mathematical Methods and Scientific Computation. Taylor & Francis.

Biofarma. (2022). Vaksin. https://www.biofarma.co.id/id/researcher/detail/vaksin

Braun, M. (2013). Differential Equations and Their Applications: An Introduction to Applied Mathematics. Springer New York.

Cain, J. W., & Reynolds, A. (2010). Ordinary and Partial Differential Equations. Virginia Commonwealth University, Math Department.

Fardinah, F. (2017). Solusi Persamaan Diferensial Biasa dengan Metode Runge-Kutta Orde Lima. Jurnal MSA (Matematika Dan Statistika Serta Aplikasinya), 5(1), 30.

Gao, D., Huang, N., Kang, S. M., & Zhang, C. (2018). Global stability analysis of an SVEIR epidemic model with general incidence rate. Boundary Value Problems, 2018(1), 1–22.

Gumel, A., & Watmough, J. (2006). An SVEIR model for assessing potential impact of an imperfect anti-SARS vaccine. Dalam Mathematical Biosciences and Engineering (Vol. 3, Issue 3). Arizona State University.

Kementrian Kesehatan RI. (2020). Pedoman Pencegahan Dan Pengendalian Coronavirus Disesase (Covid-19). Kementrian Kesehatan RI.

Kuhl, E. (2021). Introduction to mathematical epidemiology. Dalam E. Kuhl (Ed.), Computational Epidemiology: Data-Driven Modeling of COVID-19 (hlm. 3–31). Springer International Publishing.

Lynch, S. (2014). Dynamical Systems with Applications using MATLAB®. Springer International Publishing.

Ma, Z., & Li, J. (2009). Dynamical Modeling and Analysis of Epidemics. World Scientific.

Nabti, A., & Ghanbari, B. (2021). Global stability analysis of a fractional SVEIR epidemic model. Mathematical Methods in the Applied Sciences, 44(11), 8577–8597.

Putri, R. N. (2020). Indonesia dalam menghadapi pandemi Covid-19. Jurnal Ilmiah Universitas Batanghari Jambi, 20(2), 705–709.

Ross, S. L. (2007). Differential Equations, 3rd Ed. Wiley India Pvt. Limited.

Saputri, R. A. L. (2014). Analisis Kestabilan Model Susceptible Vaccinated Exposed Infected Recovered (SVEIR) Pada Penyebaran Penyakit Difteri. Universitas Diponegoro.

Susanti, N. D. (2016). Analisis perhitungan bilangan reproduksi dasar (R_0) pada model matematika dinamika malaria host-vector . Universitas Islam Negri Maulana Malik Ibrahim.

Theodore, A. K. (2016). Permodelan Matematika. https://himatika.fmipa.ugm.ac.id/2016/11/25/permodelan-matematika/

WHO. (2020). Archived: WHO Timeline - COVID-19. https://www.who.int/news/item/27-04-2020-who-timeline---covid-19

WHO. (2022). Coronavirus disease (COVID-19): Vaccines. https://www.Who.Int/News-Room/Questions-and-Answers/Item/Coronavirus-Disease-(Covid-19)-Vaccines.

Yulida, Y., & Karim, M. A. (2020). Pemodelan Matematika Penyebaran COVID-19 di Provinsi Kalimantan Selatan. Media Bina Ilmiah, 14(10), 3257–3264.




DOI: https://doi.org/10.20527/epsilon.v16i2.6496

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN

Indexed by:

          

 

EDITORIAL OFFICE 

           

 

 

 

Creative Commons License
JMMTE is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.