PEMODELAN MATEMATIKA PENYEBARAN COVID-19 DENGAN MODEL SVEIR
Abstract
Keywords
Full Text:
PDFReferences
Afwan, M. I., & Helma, H. (2021). Pemodelan Matematika Penyebaran Penyakit Covid-19 dengan Menggunakan Model SIRS. Journal of Mathematics UNP, 6(2), 34–40.
Al-Hussein, A.-B., & Tahir, F. (2020). Epidemiological Characteristics of COVID-19 Ongoing Epidemic in Iraq. Bulletin of the World Health Organization. Supplement. https://doi.org/10.2471/BLT.20.257907
Anderson, R. M., & May, R. M. C. (1992). Infectious Diseases of Humans: Dynamics and Control. Oxford University Press.
Anton, H., Rorres, C., & Kaul, A. (2019). Elementary Linear Algebra. Wiley.
Bellomo, N., & Preziosi, L. (1994). Modelling Mathematical Methods and Scientific Computation. Taylor & Francis.
Biofarma. (2022). Vaksin. https://www.biofarma.co.id/id/researcher/detail/vaksin
Braun, M. (2013). Differential Equations and Their Applications: An Introduction to Applied Mathematics. Springer New York.
Cain, J. W., & Reynolds, A. (2010). Ordinary and Partial Differential Equations. Virginia Commonwealth University, Math Department.
Fardinah, F. (2017). Solusi Persamaan Diferensial Biasa dengan Metode Runge-Kutta Orde Lima. Jurnal MSA (Matematika Dan Statistika Serta Aplikasinya), 5(1), 30.
Gao, D., Huang, N., Kang, S. M., & Zhang, C. (2018). Global stability analysis of an SVEIR epidemic model with general incidence rate. Boundary Value Problems, 2018(1), 1–22.
Gumel, A., & Watmough, J. (2006). An SVEIR model for assessing potential impact of an imperfect anti-SARS vaccine. Dalam Mathematical Biosciences and Engineering (Vol. 3, Issue 3). Arizona State University.
Kementrian Kesehatan RI. (2020). Pedoman Pencegahan Dan Pengendalian Coronavirus Disesase (Covid-19). Kementrian Kesehatan RI.
Kuhl, E. (2021). Introduction to mathematical epidemiology. Dalam E. Kuhl (Ed.), Computational Epidemiology: Data-Driven Modeling of COVID-19 (hlm. 3–31). Springer International Publishing.
Lynch, S. (2014). Dynamical Systems with Applications using MATLAB®. Springer International Publishing.
Ma, Z., & Li, J. (2009). Dynamical Modeling and Analysis of Epidemics. World Scientific.
Nabti, A., & Ghanbari, B. (2021). Global stability analysis of a fractional SVEIR epidemic model. Mathematical Methods in the Applied Sciences, 44(11), 8577–8597.
Putri, R. N. (2020). Indonesia dalam menghadapi pandemi Covid-19. Jurnal Ilmiah Universitas Batanghari Jambi, 20(2), 705–709.
Ross, S. L. (2007). Differential Equations, 3rd Ed. Wiley India Pvt. Limited.
Saputri, R. A. L. (2014). Analisis Kestabilan Model Susceptible Vaccinated Exposed Infected Recovered (SVEIR) Pada Penyebaran Penyakit Difteri. Universitas Diponegoro.
Susanti, N. D. (2016). Analisis perhitungan bilangan reproduksi dasar (R_0) pada model matematika dinamika malaria host-vector . Universitas Islam Negri Maulana Malik Ibrahim.
Theodore, A. K. (2016). Permodelan Matematika. https://himatika.fmipa.ugm.ac.id/2016/11/25/permodelan-matematika/
WHO. (2020). Archived: WHO Timeline - COVID-19. https://www.who.int/news/item/27-04-2020-who-timeline---covid-19
WHO. (2022). Coronavirus disease (COVID-19): Vaccines. https://www.Who.Int/News-Room/Questions-and-Answers/Item/Coronavirus-Disease-(Covid-19)-Vaccines.
Yulida, Y., & Karim, M. A. (2020). Pemodelan Matematika Penyebaran COVID-19 di Provinsi Kalimantan Selatan. Media Bina Ilmiah, 14(10), 3257–3264.
DOI: https://doi.org/10.20527/epsilon.v16i2.6496
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN
Indexed by:
EDITORIAL OFFICE
JMMTE is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.