MODEL EPIDEMIK PENYAKIT DIARE DENGAN FUNGSI INSIDENSI HOLLING TIPE DUA
Abstract
Keywords
Full Text:
PDFReferences
Astuti, V., Yulida, Y., & Thresye. (2021). Model Matematika Penyebaran Penyakit Diare dengan adanya Treatment. Jurnal Epsilon, 15(1), 46–57.
Bellomo, N., & Preziosi, L. (1995). Modelling mathematical Methods and Scientific Computation. Springer-Verlag New York Inc.
Bonyah, E., Twagirumukiza, G., & Gambrah, P. P. (2019). Mathematical analysis of diarrhoea model with saturated incidence rate. Open Journal of Mathematical Sciences, 3(2019)(1), 29–39. https://doi.org/10.30538/oms2019.0046
Braun, M. (1992). Differential Equation and Their Applications-Fourth Edition. Springer-Verlag, New York.
Chaturvedi, O., Lungu, E., Jeffrey, M., & Masupe, S. (2018). Rotavirus diarrhea – An analysis through epidemic modeling. In Journal of Biomedical Engineering and Informatics (Vol. 4, Issue 2). https://doi.org/10.5430/jbei.v4n2p21
Chitnis, N., Hyman, J. M., & Cushing, J. M. (2008). Determining Important Parameters in the Spread of Malaria. 70, 1272–1296. https://doi.org/10.1007/s11538-008-9299-0
Driessche, P. Van Den, & Watmough, J. (2005). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences, 180(1–2), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6
Edward, S., & Nyerere, N. (2015). A Mathematical Model for the Dynamics of Cholera with Control Measures. 4(2), 53–63. https://doi.org/10.11648/j.acm.20150402.14
Farlow, S. J. (1994). An Introduction to Differential Equation and Their Applications. Dover Publications, United States of America.
Gantmacher, F. (2000). The Theory Of Matrices. Chelsea Publishing Company.
Hethcote, H. W. (2000). The Mathematics of Infectious Diseases (SIAM REVIEW). SIAM Review, 42(4), 599–653.
Jannah, M., Ahsar Karim, M., & Yulida, Y. (2021). Analisis Kestabilan Model Seir Untuk Penyebaran Covid-19 Dengan Parameter Vaksinasi. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 15(3), 535–542. https://doi.org/10.30598/barekengvol15iss3pp535-542
Karim, M. A., & Yulida, Y. (2021). Analisis Kestabilan dan Sensitivitas pada Model Matematika SEIRD dari Penyebaran Covid-19: Studi Kasus di Kalimantan Selatan. Media Bina Ilmiah, 16(5), 7003–7012.
Lasisi, N. O., Akinwande, N. I., & Abdulrahaman, S. (2020). Optimal control and effect of poor sanitation on modelling the acute diarrhea infection. Journal of Complexity in Health Sciences, 3(1), 91–103. https://doi.org/10.21595/chs.2020.21409
Majeed, S. N. (2016). Stability analysis of SIR holing type II infectious epidemic modelwith treatment failure rate. Mathematical Theory and Modeling , 6(2), 50–60. www.iiste.org
Martcheva, M. (2015). An Introduction to Mathematical Epidemiology. Springer, New York.
Perko, L. (2001). Differential Equation and Dynamics. Springer Verlag New York.
Ross, S. L. (2004). Differential Equation (Third). John Wiley & Sons, New Delhi.
Safi, M. A., & Garba, S. M. (2012). Global stability analysis of SEIR model with holling type II incidence function. Computational and Mathematical Methods in Medicine, 2012, 1–8. https://doi.org/10.1155/2012/826052
Selviana, S., Trisnawati, E., & Munawarah, S. (2017). Faktor-Faktor Yang Berhubungan Dengan Kejadian Diare Pada Anak Usia 4-6 Tahun. Jurnal Vokasi Kesehatan, 3(1), 28. https://doi.org/10.30602/jvk.v3i1.78
Yulida, Y. (2019). Persamaan Diferensial Biasa. CV. IRDH, Malang.
Yulida, Y., & Karim, M. A. (2020). Pemodelan Matematika Penyebaran COVID-19 di Provinsi Kalimantan Selatan. Jurnal Binawakya, 14(10), 3257–3264. http://ejurnal.binawakya.or.id/index.php/MBI/article/view/572
Yulida, Y., & Karim, M. A. (2021). Model Matematika SEIRD (Susceptible, Exposed, Infected, Recovered, Dan Death) Untuk Penyebaran Penyakit ISPA. Media Bina Ilmiah, 15(7), 4815–4824.
DOI: https://doi.org/10.20527/epsilon.v16i2.6642
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN
Indexed by:
EDITORIAL OFFICE
JMMTE is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.