ESTIMASI PARAMETER PADA DISTRIBUSI EKSPONENSIAL

Renny Aulia, Noor Fajriah, Nur Salam

Abstract


Point estimation of a population parameter is a value obtained from related
sample and used as an estimator of the parameter whose value is unknown. Point
estimator can be determined by using two methods: classical method (moment
method and maximum likelihood) and Bayes method. The purpose of this research
is to determine the point estimation of an exponential distribution with one
parameter using Moment method, Maximum Likelihood method and Bayes
method and determine the point estimation of an exponential distribution with two
parameters Moment method and Maximum Likelihood method.
The method of this research is a literature study from various sources that
support and relevant to the topic.
The result shows that the point estimation of Exponential distribution for
one parameter by using Moment method and Maximum Likelihood Method is
x , while the Bayes estimator of Exponential distribution for one parameter with
prior konjugate Gamma distribution is  
 x  n p
n p
n
i
i    
  


1
1 and Chi Square is




  




 




  
 2 2
1
1
2
1
k
x n
k
n
n
i
i
. The point Estimation of exponential distribution for two
parameters by using the Moment method is 1 2
2
ˆ X
n
x
n
i
i
 

 and
1 2
2
ˆ X
n
x
X
n
i
i
  

 , whereas by using the Maximum Likelihood method is
 
n
x x
n
i
n i 


 1
1:
ˆ
and n x 1: ˆ  .


Keywords


Point Estimation, Exponential Distribution, Moment Method, Maximum Likelihood Method, Bayes Method.

Full Text:

PDF

References


Agustina, S.K. 2007. Estimasi parameter dengan Metode Bayes. Skripsi Fakultas Matematika dan llmu Pengetahuan Alam. Universitas Lambung

Mangkurat. Banjarbaru.

Bain, L. J. 1991. Introduction To Probability and Mathematical Statistic.

University of Missouri-Rolla. California.

Dudewicz, dkk. 1995. Statistika Matematika Modern. ITB, Bandung.

Harvill, dkk. Matematika Terapan Untuk Para Insinyur dan fisikawan.

Universitas Gajahmada Press. Yogyakarta.

Herrhyanto, N. 2003. Statistika Matematis Lanjutan.Pustaka Setia, Bandung.

Nelder, J.A, & Wedderburn, R. W. M. 1972. Generalized Linear Models, J. R. Statist. Soc. Assoc. 135, 370-84.

Noegroho, S. 2007. Teori Estimator Titik. Statistika Matematika. 09 : 90-123

Pasaribu, A. 1983. Pengantar Statistik. Ghalia Indonesia. Jakarta.

Sudjana. 2005. Metode Statistika. Tarsito. Bandung.

Supranto, J. M. A. 1998. Statistik Teori dan Aplikasi (Edisi kelima) Jilid 2.

Erlangga. Jakarta.

Walpole. 1995. Pengantar Statistika. Edisi ke-3. Gramedia, Jakarta.

Walpole, dkk. 2005. Ilmu Peluang dan Statistika Untuk Insinyur dan Ilmuwan. Edisi keempat. ITB, Bandung.

Wibisono, Y. 2005. Metode Statistik. Gadjah Mada University Press. Yogyakarta.




DOI: https://doi.org/10.20527/epsilon.v5i2.75

Refbacks

  • There are currently no refbacks.


Copyright (c) 2011 JURNAL MATEMATIKA MURNI DAN TERAPAN EPSILON

Indexed by:

          

 

EDITORIAL OFFICE 

           

 

 

 

Creative Commons License
JMMTE is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.