ALGORITMA GENETIKA PADA PENYELESAIAN AKAR PERSAMAAN SEBUAH FUNGSI
Abstract
The Genetic Algorithm is one approach to determining global optimum that is based on the theory of evolution. Outline the steps in this procedure starting with establishing a set of potential solutions and making changes with some iterations with genetic algorithms to get the best solution. Calculation the root of a function is actually a classic problem in mathematics. For that, various methods have been numerically developed. From the results of the implementation of genetic algorithm to find the root of the equation of a function h (x1, x2) = 1000 (x1-2x2) 2+ (1-x1) 2 in can be that FitMax (genome 9) = 10, FitMin (genome 107) = 0, FitAvr = 0.153, FitTot = 30.6, Best Genome: 10011001001000110010, x1 = 1 and x2 = 0.5 and this is the same as the exact value or value actually from the root of the equation
Keywords
Genetic Algorithm, Numerical, Root Equation.
References
Arkeman, Y., 2010, Algoritma Genetika, Bogor
Berlianty, Intan dan Miftahol Arifin, 2010, Teknik-Teknik Optimasi Heuristik, Penerbit Graha Ilmu, Yogyakarta.
Desiani, Anita dan Arhami, Muhammad, 2006, Konsep Kecerdasan Buatan, Penerbit Andi, Yogyakarta.
Kalyanmoy Deb. 1995. Simulated Binary Crossover for Continuous Search Space. Complex System, 9:115 -148
Suyanto, 2005, Algoritma Genetika dalam MATLAB, Penerbit ANDI, Yogyakarta.
Suyanto, 2005, Algoritma Optimasi, Penerbit Graha Ilmu, Yogyakarta.
DOI: https://doi.org/10.20527/epsilon.v6i2.87
Refbacks
- There are currently no refbacks.
Copyright (c) 2012 JURNAL MATEMATIKA MURNI DAN TERAPAN EPSILON
Indexed by:
EDITORIAL OFFICE
JMMTE is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.