HASIL KALI SILANG ω- SUBSEMIRING FUZZY
Abstract
Fuzzy semirings are one of the results of a combination of semirings and fuzzy sets. Semiring is one of the extensions of the ring. The cross product of two or more semirings gives a semiring. We are motivated to conduct cross-product research on fuzzy semiring based on the condition of cross-product semiring. This paper introduces the direct product of two (more) fuzzy subsemirings. In addition, we investigate the relationship between the cross product of two (more) fuzzy subsemirings and the cross product of two (more) level subsets that are subsemiring
Keywords
Full Text:
PDFReferences
Abdurrahman, S. (2020a). Interior subgrup ω-fuzzy. Fibonacci : Jurnal Pendidikan Matematika Dan Matematika, 6(2), 91–98. https://doi.org/https://doi.org/10.24853/fbc.6.2.91-98
Abdurrahman, S. (2020b). Karakteristik subsemiring fuzzy. Jurnal Fourier, 9(1), 19–23. https://doi.org/10.14421/fourier.2020.91.19-23
Abdurrahman, S. (2020c). ω – fuzzy subsemiring.pdf. Jurnal Matematika, Sains, Dan Teknologi, 21(1), 1–10. https://doi.org/https://doi.org/10.33830/jmst.v21i1.673.2020
Abdurrahman, S. (2022). Homomorphisms and (λ, µ] – Fuzzy subgroup. AIP Conference Proceedings, 2577(1), 20001. https://doi.org/10.1063/5.0096015
Abdurrahman, S. (2023). Cross product of ideal fuzzy semiring. Barekeng: Journal of Mathematics and Its Application, 17(2).
Abdurrahman, S., Thresye, Lula, R. R., Rachman, R. A., & Evina, Y. (2021). Subtraction of soft matrices. Journal of Physics: Conference Series, 2106(1). https://doi.org/10.1088/1742-6596/2106/1/012028
Ahsan, J., Mordeson, J. N., & Shabir, M. (2012). Fundamental Concepts. In Fuzzy Semirings with Applications to Automata Theory (pp. 3–13). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-27641-5_1
Dib, K. A., & Youssef, N. L. (1991). Fuzzy cartesian product, fuzzy relations and fuzzy functions. Fuzzy Sets and Systems, 41(3), 299–315. https://doi.org/https://doi.org/10.1016/0165-0114(91)90134-C
Ersoy, B., A, T., & I, D. (2002). Cartesian Product on Fuzzy Prime Ideals. Journal of Applied Sciences, 2(11), 1022–1024. https://doi.org/10.3923/jas.2002.1022.1024
Golan, J. S. (2003). Semirings. In Semirings and Affine Equations over Them: Theory and Applications (pp. 1–26). Kluwer Academic Publishers.
Hemabala, K., & Kumar, S. (2020). Cartesian product of multi L-fuzzy ideals of Γ-near ring. Advances in Mathematics: Scientific Journal, 9, 5273–5281. https://doi.org/10.37418/amsj.9.7.96
Mordeson, J., & Bhutani, K. R. (2005). Fuzzy Subsets and Fuzzy Subgroups. In Group (Vol. 39, Issue X, pp. 1–39). https://doi.org/10.1007/10936443_1
Rosenfeld, A. (1971). Fuzzy groups. Journal of Mathematical Analysis and Applications, 35(3), 512–517. https://doi.org/10.1016/0022-247X(71)90199-5
Sharma, P. K. (2013). Alpha - Fuzzy Subgroups. International Journal of Fuzzy Mathematics and Systems, 3(1), 47–59.
Yetkin Çelikel, E., & Olgun, N. (2011). Direct product of fuzzy groups and fuzzy rings. International Mathematical Forum.
Zadeh, L. A. (1965). Fuzzy Sets. Information and Control, 8(3), 338–353. https://doi.org/https://doi.org/10.1016/S0019-9958(65)90241-X
DOI: https://doi.org/10.20527/epsilon.v17i2.8748
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN
Indexed by:
EDITORIAL OFFICE
JMMTE is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.