PEMBUKTIAN SIFAT RUANG BANACH PADA B1/4(K)

Malahayati Malahayati

Abstract


In this paper we study class of bounded Baire-1=4 functions on a separable
metric space K denoted by B1=4(K). Haydon, et all [5] proved that B1=4(K) is a Banach
space by using the series criterion for completeness. In this paper we prove the statement
in a dierent way.


Keywords


Banach Space, separable metric space, Baire function

Full Text:

PDF

References


Ash, R.B. 2007. Real Variables with Basic Metric Space Topology. Department of Mathematics University of Illionis at Urbana-Champaign.

Dugundji, J. 1966. Topology. Allyn and Bacon Inc. Boston.

Farmaki, V. 1996. On Baire-1=4 Functions. Trans. Amer. Math. Soc, 348, 10.

Gordon, R.A. 1994. The Integral of Lebesgue, Denjoy, Perron and Henstock. American Mathematical Society USA.

Haydon, R., Odell, E. dan Rosenthal, H.P. 1991. On Certain Classes of Baire- 1 Functions with Applications to Banach Space Theory. Lecture Notes in Math. 1470. Springer New York.

Kreyszig, E. 1978. Introductory Functional Analysis with Applications. John Wiley and Sons Inc. Canada.

McShane, E.J. 1944. Integration. Princeton University Press. Princeton.

Rosenthal, H.P. 1994. A Characterization of Banach Spaces Containing C0. J. Amer. Math. Soc, 7, 3, 707-748.

Rosenthal, H.P. 1994. Dierences of Bounded Semi-Continuous Functions I. http://www.arxiv.org/abs/math/9406217.




DOI: https://doi.org/10.20527/epsilon.v7i1.91

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 JURNAL MATEMATIKA MURNI DAN TERAPAN EPSILON

Indexed by:

          

 

EDITORIAL OFFICE 

           

 

 

 

Creative Commons License
JMMTE is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.