PERAMALAN JUMLAH PRODUKSI BATUBARAMENGGUNAKAN METODE ARIMA (STUDI KASUS: PT ARUTMIN INDONESIA SITE ASAM-ASAM)
Abstract
In the world of industry and investment, the mining sector has an important role in producing natural resources in Indonesia. South Kalimantan Province is one of the regions which is very famous for being rich in natural resources, especially in the mining sector, especially energy minerals in the form of coal. In recent years, coal production at PT. Arutmin Asam Asam experienced an unstable amount of production. This study aims to obtain the best model and predict the amount of coal production at PT Arutmin Indonesia Site Asam-Asam, South Kalimantan Province using the ARIMA (Autoregressive Integrated Moving Average) method. The best Autoregressive Integrated Moving Average (ARIMA) method for predicting coal production at PT Arutmin Indonesia Site Asam-Asam is the ARIMA model (2,1,3) with a smaller Root Mean Square Error (RMSE) compared to other models, namely 92029.74. Forecasting results of coal production at PT Arutmin Arutmin Site Asam-Asam from January to August 2023 tend not to indicate stability or there will be increases and decreases in the forecasting results obtained.
Keywords
Full Text:
PDFReferences
ALrif, I. (2022). Eral Balru Baltubalral Indonesial. Gralmedial Pustalkal Utalmal.
ALsallial, R. (2018). Peralmallaln Produksi Roti Gulung Paldal Industri Rumalh Talnggal Lalutaln Kue Menggunalkaln Metode ALRIMAL Berbalntu Minitalb 14 For Windows. Universitals Salnaltal Dhalrmal.
ESDM. (2021). Caldalngaln Baltubalral Malsih 38,84 Milialr Ton, Teknologi Bersih Pengelolalalnnyal Terus Didorong. Kementerialn Energi Daln Sumber Dalyal Minerall.
https://www.esdm.go.id/id/medial-center/alrsip-berital/caldalngaln-baltubalral-malsih-3884-milialr-ton-teknologi-bersih-pengelolalalnnyal-terus-didorong
Halrialnto. (2018). Penggunalaln Metode ALRIMAL (ALutoregressive Integralted Moving ALveralge) untuk Pralkiralaln Jumlalh Permintalaln Gulal Ralfinalsi (Studi Kalsus: PT. Malkalssalr Tene). Universitals Islalm Negeri ALlaluddin.
Kaldir, N. AL. (2017). Verifikalsi Prediksi Enso Musimaln Menggunalkaln Formulal Willmott.
Malulalnal, H. AL. (2018). Pemodelaln Deret Walktu Daln Peralmallaln Curalh Hujaln Paldal Dual Belals Stalsiun Di Bogor. Jurnall Maltemaltikal Staltistikal Daln Komputalsi, 15(1), 50. https://doi.org/10.20956/jmsk.v15i1.4424
Ozturk, S., & Ozturk, F. (2018). Forecalsting Energy Consumption of Turkey by ALrimal Model. Journall of ALsialn Scientific Resealrch, 8(2), 52–60. https://doi.org/10.18488/journall.2.2018.82.52.60
Palmungkals, M. H. (2016). Estimalsi Palralmeter Model ALRIMAL Menggunalkaln Kallmaln Filter untuk Peralmallaln Permintalaln Dalralh (Studi Kalsus: UTD PMI Suralbalyal). http://repository.its.alc.id/901/
PMPTSP. (2021). Potensi Pertalmbalngaln. Dinals Penalnalmaln Modall Daln Pelalyalnaln Terpaldu Saltu Pintu Provinsi Kallimalntaln Selaltaln. https://dpmptsp.kallselprov.go.id/web/potensi-pertalmbalngaln/
Ralhmi, AL., & Talufiq. (2017). Peralmallaln Persedialaln Malteriall Baltubalral Dengaln Metode Single Exponentiall Smoothing. STMIK Balnjalrbalru, 13(1), 1577–1586.
Rosaldi, D. (2011). ALnallisis Ekonometrikal Runtun Walktu Teralpaln (N. W. Kurnialwaln (ed.); 1st ed.). Penerbit ALndi. Yogyalkalrtal.
Wei, W. W. S. (2006). Time Series ALnallysis: Univalrialte alnd Multivalrialte Methods (D. Lynch, S. Oliver, & R. Halmpton (eds.); 2nd ed.). ALddison Wesley. Boston.https://doi.org/10.2307/1269015
Wiralyalsal, I. K. AL. (2020). Peralmallaln Jumlalh Produksi Paldi Kalbupalten Luwu Timur Dengaln Menggunalkaln Model ALRIMAL. Universitals Cokroalminoto Pallopo.
Wulaln, S. J. C., Utalmi, T. W., & Halris, M. ALl. (n.d.). Peralmallaln Jumlalh Penumpalng Keretal ALpi di Jalbodetalbek Menggunalkaln Metode Hybrid ALutoregressive Integralted Moving ALveralge-Raldiall Balsis Function Neurall Network ( ALRIMAL-RBFNN ).
Yunital, T. (2019). Peralmallaln Jumlalh Penggunalaln Kuotal Internet Menggunalkaln Metode ALutoregressive Integralted Moving ALveralge ( ALRIMAL ). Journall of Malthemaltics: Theory alnd ALpplicaltions, 1(2), 16–22.
DOI: https://doi.org/10.20527/epsilon.v17i1.9288
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN
Indexed by:
EDITORIAL OFFICE
JMMTE is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.