ANALISIS VALUE AT RISK PORTOFOLIO SAHAM LQ45 DENGAN METODE SIMULASI MONTE CARLO CONTROL VARIATES

Westi Widiyatari, Evy Sulistianingsih, Wirda Andani

Abstract


Value at Risk (VaR) with the Monte Carlo (MC) simulation is an estimate of the maximum loss over a given period of time and with a specific degree of confidence. MC VaR uses the Control Variates (CV) technique which is one of the reduction techniques in the MC method to improve the efficiency of VaR estimation. This study also aims to analyze the risk of the LQ45 indexed stock portofolio with Monte Carlo Control Variates (MCCV) VaR. In addition, this study compares MCCV VaR with standar MC VaR. The closing prices of the shares of PT Bank Negara Indonesia Tbk (BBNI) and PT Bank Central Asia Tbk (BBCA) were the source of the data for this study. The 95% confidence level is used for this study to estimate one-day MCCV VaR. The results obtained show that MCCV is able to reduce the variance of the estimate more quickly than the standar MC VaR. Thus, MCCV VaR is more efficient than the standard MC VaR.


Keywords


Control Variates, Monte Carlo, Portofolio, Value at Risk

Full Text:

PDF

References


Adnyana, I. M. (2020). Manajemen Investasi dan Protofolio. Jakarta: LPU-UNAS

Artanadi, N. N. A., Dharmawan, K., & Jayanegara, K. (2017). Penentuan Harga Opsi Beli Tipe Asia Dengan Metode Monte Carlo-Control Variate. E-Jurnal Matematika, 6(1), 29-36.

Adnyana, I. M. (2020). Manajemen Investasi dan Protofolio. Jakarta: LPU-UNAS

Artanadi, N. N. A., Dharmawan, K., & Jayanegara, K. (2017). Penentuan Harga Opsi Beli Tipe Asia Dengan Metode Monte Carlo-Control Variate. E-Jurnal Matematika, 6(1), 29-36.

Fitaloka, E., Sulistianingsih, E., & Perdana, H. (2018). Pengukuran Value at Risk (VaR) Pada Portofolio Dengan Simulasi Monte Carlo. Buletin Ilmiah Math. Stat. Dan Terapannya (Bimaster), 07(2), 141–148.

Glasserman, P. (2003). Monte Carlo Methods in Financial Engineerring New York (US):Springer.

Jorion, P. (2007). Value at Risk: The New Benchmark For Managing Financial Risk Third Edition. New York: The Mc Graw-Hill Companies.

Lidebrandt, T., (2007). Variance Reduction Three Approaches to Control Variates. Postal address : Mathematical Statistics, SE-109(91).

Maruddani, D. A. I. (2019). Value at Risk untuk Pengukuran Risiko Investasi Saham. WADE Grup.

Pachamanova, D. A., & Fabozzi, F. J. (2011). Simulation and Optimization in Finance: Modeling with MATLAB, @RISK, or VBA. New York: John Wiley & Sons.

Pangaribuan, I. M., Dharmawan, K., & Sumarjaya, I. W. (2021). Analisis Risiko Portofolio Menggunakan Metode Simulasi Monte Carlo Control Variates. E-Jurnal Matematika, 10(4), 192-197.

Pramuditya, S. A. (2017). Penentuan Harga Opsi Asia Dengan Metode Monte Carlo. Jurnal Matematika “MANTIK", 3(1), 44-48.

Purba, M., Sudarno, & Mukid, M. A. (2014). Optimalisasi Portofolio Menggunakan Capital Asset Pricing Model (CAPM) Dan Mean Variance Efficient Portfolio (MVEP). Jurnal Gaussian, 3(3), 481–490.

Putri, L. H. T. W., Dharmawan, K., & Sumarjaya, I. W. (2018). Penentuan Harga Jual Opsi Barrier Tipe Eropa Dengan Metode Antithetic Variate Pada Simulasi Monte Carlo. E-Jurnal Matematika, 7(2), 71-78.

Rosha, M. (2021). Pengukuran Value at Risk ( VaR ) Saham Perbankan Dalam Indeks IDX30 Dengan Metode Simulasi Historis, UNPjoMath, 6(4), 44–49.

Wicaksono, B. H., Wilandari, Y., & Rusgiyono, A. (2014). Perbandingan Metode Variance Covariance Dan Historical Simulation Untuk Mengukur Risiko Investasi Reksa Dana, Jurnal Gaussian, 3(4), 585–594.




DOI: https://doi.org/10.20527/epsilon.v17i1.9536

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN

Indexed by:

          

 

EDITORIAL OFFICE 

           

 

 

 

Creative Commons License
JMMTE is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.