Mapping of Teak (Tectona grandis) Growing Stock Volume based on Sentinel-2 Imagery Classification

Bekti Larasati

Abstract


Remote sensing utilization for plantation forests management in Java was not yet widely used, whereas the ability of remote sensing data for land cover monitoring and forest resource mapping has been developed, ranging from low resolution imagery for global areas to moderate and high resolution for small scale areas. Data availability and human resources often become obstacles in the application. The emergence of Sentinel satellite images becomes an alternative because the dataset is free access and has moderate spatial resolution and high temporal resolution. This study aims to map the growing stock volume in UGM Educational and Training Forest using Sentinel-2 imagery. Three kinds of classification method based on machine learning algorithms i.e. Random Forest, K-NN and SVM were compared for land cover classification. An NDVI algorithm was also used for mapping the spectral value distribution. Moreover, a stand age distribution which obtained from KHDTK UGM manager were also map. A stand classification map based on land cover types, NDVI value and stand age distribution was created as a basis of growing stock volume estimation. The analysis show that the growing stock volume can be estimated using these method with RMSE 177,8 m3 and MAPE 21,9 m3.


Keywords


Sentinel, growing stock volume, machine learning, plantation, spatial

Full Text:

PDF

References


Afgatiani, P.M., Suhadha, A., Sura, A.H., Dendang, B., Hikmahwan, W.N., & Mangiri, T.M. (2021, November). Deteksi hutan bakau dengan Sentinel-2 di Desa Labuan, Poso, Sulawesi Tengah. Inderaja Majalah Ilmiah Semi Populer XII (14). Diakses dari https://www.researchgate.net/profile/Pingkan-Mayestika-Afgatiani/publication/

Askar, Nuthammachot, N., Phairuang, W., Wicaksono, P., & Sayektiningsih, T. (2018). Estimating above ground biomass on private forest using Sentinel 2 Imagery. Journal of Sensors, https://doi.org/10.1155/2018/6745629.

Chrysafis, I., Mallinis, G., Siachalou, S., & Patias, P. (2017). Assessing the relationships between growing stock volume and Sentinel-2 imagery in a Mediterranean forest ecosystem. Remote Sensing Letter 8 (6), 508-517. http://dx.doi.org/10.1080/2150704X.2017.1295479.

Congalton, R.G., & Green, K. (2019). Assessing the Accuracy of Remotely Sensed Data Principles and Practices, Third Edition. Boca Raton: CRC Press Taylor & Francis Group.

European Space Agency. (2012). Sentinel-2, ESA’s Optical High-Resolution Mission for GMES Operational Services. Noordwijk: ESA Communications.

Immitzer, M., Vuolo, F., & Atzberger, C. (2016). First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe. Remote Sensing 8 (166), doi:10.3390/rs8030166.

Lillesand, T.M., Kiefer, R.W., & Chipman, J.W. (2015). Remote Sensing and Image Interpretation. USA: John Wiley & Sons Inc., 6 editions.

Lu, D., & Weng, Q. (2007). A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing 28 (5), 823-870, DOI: 10.1080/01431160600746456.

Margono, B.A., Usman, A.B., Budiharto, & Sugardiman, R.A. (2016). Indonesia’s Forest Resource Monitoring. Indonesian Journal of Geography 48 (1), https://doi.org/10.22146/ijg.12496.

Muhsoni, F.F., Sambah, A.B., Mahmudi, M., & Wiadnya, D.G.R. (2018). Estimation of mangrove carbon stock with hybrid method using image Sentinel-2. Internasional Journal of GEOMATE 15 (49), 185-192, https://doi.org/10.21660/2018.49.52661

Noi, P.T. & Kappas, M. (2018). Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery. Sensors 18 (18), doi:10.3390/s18010018. www.mdpi.com/journal/sensors. Diunduh tanggal: 7 Maret 2019.

Puliti, S., Saarela, S., Gobakken, T., Stahl, G., & Naesset, E. (2018). Combining UAV and Sentinel-2 auxiliary data for forest growing stock volume estimation through hierarchical model-based inference. Remote Sensing of Environment 204, 485–497. www.elsevier.com/locate/rse. Diunduh tanggal: 7 Maret 2019.

Simon, H. (2007). Metode Inventore Hutan. Pustaka Pelajar. Yogyakarta.

Simon, H. (2000). Hutan Jati dan Kemakmuran: Problematika dan Strategi Pemecahannya. Bigraf Publishing. Yogyakarta.

Vuolo, F., Neuwirth, M., Immitzer, M., Atzberger, C., & Ng, W. (2018). How much does multi-temporal Sentinel-2 data improve crop type classification? International Journal of Applied Earth Observation and Geoinformation 72, 122-130. www.elsevier.com/locate/jag. Diunduh tanggal: 7 Maret 2019.

Waru, A.T., Bayanuddin, A.A., Nugroho, F.S., Rukminasari, N. (2021). Analisis temporal perubahan hutan mangrove menggunakan citra satelit Sentinel-2. Seminar Nasional Geomatika. DOI: 10.24895/SNG.2020.0-0.1193.

Zaitunah, A., Samsuri, Ahmad, A.G. & Safitri, R.A. (2018). Normalized difference vegetation index (ndvi) analysis for land cover types using landsat 8 oli in besitang watershed, Indonesia. IOP Conference Series: Earth and Environmental Science 126.




DOI: https://doi.org/10.20527/jss.v5i3.5140

Refbacks

  • There are currently no refbacks.



Creative Commons License

Jurnal Sylva Scienteae is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.