ANALISIS NEKROMASSA BERDASARKAN INDEKS VEGETASI DI KAWASAN HUTAN DENGAN TUJUAN KHUSUS UNIVERSITAS LAMBUNG MANGKURAT
Abstract
This study aims to calculate the correlation of the potential of restless necromass with vegetation index and estimate restless necromass with greenness index using Landsat 9 imagery in the KHDTK area. The data used in this study is in the form of primary data and secondary data. The primary data used are remote sensing data in the form of the latest Landsat 9 imagery and field observation data. Field conservation data is the bottom carbon (litter necromass) which includes total weight, wet weight, and dry weight in each sampling plot. While secondary data are obtained based on literature studies. Then perform correlation analysis, regression analysis, and accuracy tests. The results of this study showed that based on 35 samples, research data was taken around 28 samples to be a reference in modeling. The results of a single regression correlation between the vegetation index value and the dry weight of the necromass were obtained a correlation value of 0.60 and an RMSE value of 12.56 obtained from the average dry weight of the necromass of 28 samples whose average number of necromass dry weight was 106.59. This means that this modeling value has a slight error difference, so that this correlation modeling can be used as a reference to measure and map the magnitude of the distribution of restless necromass.
Penelitian ini bertujuan menghitung korelasi potensi nekromassa seresah dengan indeks vegetasi dan Mengestimasi nekromassa seresah dengan indeks kehijauan menggunakan citra Landsat 9 pada areal KHDTK. Data yang digunakan dalam penelitian ini berupa data primer dan data sekunder. Data primer yang digunakan yaitu data pengindraan jauh berupa Citra Landsat 9 terbaru dan data hasil observasi lapangan. Data obeservasi lapangan yaitu yaitu karbon bawah (nekromassa seresah) yang meliputi berat total, berat basah, dan berat kering dalam setiap plot sampling. Sedangkan data sekunder diperoleh berdasarkan studi kepustakaan. Kemudian malakukan analisis korelasi, analisis regresi, dan uji akurasi. Hasil penelitian ini menunjukan bahwa Berdasarkan 35 jumlah sampel data penelitian diambil sekitar 28 sampel untuk menjadi acuan dalam pemodelan. Adapun hasil korelasi regresi tunggal antara nilai indeks vegetasi dengan berat kering nekromassa seresah yaitu mendapatkan nilai korelasi sebesar 0,60 dan nilai RMSE sebesar 12,56 yang didapatkan dari rata rata Berat Kering nekromassa yang berjumlah 28 sampel yang jumlah rata rata Berat Kering Nekromassa sebesar 106,59. Artinya nilai pemodelan ini memiliki selisih kesalahan yang sedikit, sehingga pemodelan korelasi ini dapat dijadikan acuan untuk mengukur dan memetakan besar sebaran nekromassa seresah.
Keywords
Full Text:
PDFReferences
Asy’ari, M., Syam’ani, T, Satriadi. 2021. Pemetaan Biomassa Tegakan Hutan Hujan Tropis Di Bukit Mandiangin Menggunakan Citra Sentinel-2 Msi. Fakultas Kehutanan Universitas Lambung Mangkurat. Banjarbaru.
Danoedoro. P. 2012. Pengolahan Citra Digital. Yogyakarta: Universitas Gadjah Mada.
Deng, F., & Liang, C. 2022. Revisiting the quantitative contribution of microbial necromass to soil carbon pool: Stoichiometric control by microbes and soil. Soil Biology and Biochemistry, 165, 108486.
DEUS, K. H. P. D., Figueiredo Filho, A., Dias, A. N., & Bonete, I. P. 2018. Woody necromass stock in mixed ombrophilous forest using different sampling methods. Revista Caatinga, 31, 674-680.
Fonsêca, N. C., & Meunier, I. M. J. 2019. Evaluation of the Plant Necromass Component: Methodological Approaches and Estimates in Atlantic Forest, Northeast Brazil. Floresta e Ambiente, 26.
Franczak, M., & Czarnecka, B. 2016. Necromass as seed reservoir in macroforb meadows with varied moisture conditions. Acta Agrobotanica, 69(4).
Hairiah, K. dan S. Rahayu. 2007. Petunjuk Praktis Pengukuran Karbon Tersimpan di Berbagai Macam Penggunaan Lahan. World agroforestry centre icraf south east asia regional office. Bogor. Jurnal Ilmu Lingkungan. vol. 12 Issue I 21-31: (2014) ISSN 1829-8907
Huete, A. R., Liu, H., & van Leeuwen, W. J. 1997, August. The use of vegetation indices in forested regions: issues of linearity and saturation. In IGARSS'97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing-A Scientific Vision for Sustainable Development (Vol. 4, pp. 1966-1968). IEEE.
Liang, C., Amelung, W., Lehmann, J., & Kästner, M. 2019. Quantitative assessment of microbial necromass contribution to soil organic matter. Global change biology, 25(11), 3578-3590.
Li, N., Xu, Y. Z., Han, X. Z., He, H. B., Zhang, X. D., & Zhang, B. 2015. Fungi contribute more than bacteria to soil organic matter through necromass accumulation under different agricultural practices during the early pedogenesis of a Mollisol. European Journal of Soil Biology, 67, 51-58.
Miltner, A., Zheng, T., Liang, C., & Kästner, M. 2020, May. Microbial necromass as a source for soil organic matter formation-implications for soil processes. In EGU General Assembly Conference Abstracts (p. 13094).
Pessoa, M. S., Rocha‐Santos, L., Talora, D. C., Faria, D., Mariano‐Neto, E., Hambuckers, A., & Cazetta, E. 2017. Fruit biomass availability along a forest cover gradient. Biotropica, 49(1), 45-55.
Prasetyo, N. N., B, Sasmito, & Y, Prasetyo. 2017. Analisis Perubahan Kerapatan Hutan Menggunakan Metode NDVI dan EVI Pada Citra Satelit Landsat 8 Tahun 2013 dan 2016 (Area Studi: Kabupaten Semarang). Jurnal Geodesi Undip, 6(3), 21-27.Riduwan. 2011. Dasar-dasar Statistika. Bandung: Alfabeta
Sunardi Nur. 2009. Pengantar Satistika. Jakarta: Bumi Aksara.
Villanova, P. H., Torres, C. M. M. E., Jacovine, L. A. G., Soares, C. P. B., da Silva, L. F., Schettini, B. L. S., ... & Zanuncio, J. C. 2019. Necromass carbon stock in a secondary atlantic forest fragment in Brazil. Forests, 10(10), 833.
Zaninovich, S. C., Fontana, J. L., & Gatti, M. G. 2016. Atlantic Forest replacement by non-native tree plantations: Comparing aboveground necromass between native forest and pine plantation ecosystems. Forest Ecology and Management, 363, 39-46.
DOI: https://doi.org/10.20527/jss.v7i5.9604
Refbacks
- There are currently no refbacks.
Jurnal Sylva Scienteae is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.