PRAKIRAAN INDEKS KEKERINGAN MENGGUNAKAN METODE SEASONAL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (SARIMA) BERDASARKAN DATA STANDARDIZED PRECIPITATION INDEX (SPI) KOTA BANJARBARU

Nabila Septiani, Nur Salam, Khairullah Khairullah

Abstract


Drought is a disaster that has a bad impact, especially in the city of Banjarbaru. There are  various ways to reduce the impact of drought in the future, one of which is by looking for information regarding the predicted drought index for the following year. The data used in this research to find the drought index value is Banjarbaru City rainfall data for 2007-2022. Seasonal Autoregressive Integrated Moving Average (SARIMA) method  is a calculated method for predicting rainfall data  and the data obtained is a forecast of rainfall in the city of Banjarbaru for the next 12 periods, namely SARIMA (0,2,3) (0,1,1)12. This model is a model that is suitable for use because it has fulfilled several tests, namely stationarity of variance and mean, significance test, white noise test and normality test with an AIC value of 1022,60 and an equation model obtained from SARIMA (0,2,3) (0,1,1)12 is (1-B)2 (1-B12) Zt=(1+1,77B-0,54B2+ 0,23B3 )(1-0,96B12t. After obtaining forecast rainfall data for the next 12 periods. Rainfall data for 2007-2022 and forecast results for 2023 were used to find the drought index value using the Standardized Precipitation Index (SPI) method. It was found that the highest negative drought index value occurred in January, namely -1,774, including the dry category and the drought index had a positive value The highest occurred in June, namely 0,582, including the normal category.  The calculation results of this drought index forecast are used to provide additional information to anticipate drought disasters in the future.

 

Keywords:   Drought Index, Rainfall, SPI Method, SARIMA Method, AIC

Full Text:

PDF

References


Badan Penanggulangan Bencana Daerah Provinsi Kalimantan Selatan. (2022). Rekap Bencana Kebakaran Hutan dan Lahan. Https://Data.Kalselprov.Go.Id/.

Fadliani, I., Purnamasari, I., & Wasono. (2021). Peramalan dengan Metode SARIMA Pada Data Inflasi dan Identifikasi Tipe Outlier (Studi Kasus: Data Inflasi Indonesia Tahun 2008-2014). Jurnal Statistika Universitas Mulawarman, 9(2), 109–116.

McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The Relationship of Drought Frequency andd Duration to Time Scales. Eight Conference on Applied Climatology, 1–6.

Montgomery, D. C., Jennings, C. L., & Kulahci, M. (2015). Introduction to Time Series Analysis and Forecasting (2nd Ed). John Wiley & Sons, Inc.

Nasution, L. M. (2017). Statistik Deskriptif. Jurnal Hikmah, 14(1), 49–55.

Niemeyer, S. (2008). New drought indices. Options Méditerranéennes. Série A : Séminaires Méditerranéens (CIHEAM), International Conference on "Drought management: Scientific and technological innovations", 1, Zaragoza (Spain), 12-14 June 2008.

Puslitbang Sumber Daya Air. (2014). Naskah Ilmiah Analisa Kekeringan Untuk Pengelolaan Sumber Daya Air. In Kementerian Pekerjaan Umum. Puslitbang Sumber Daya Air.

Putri, N. (2020). Analisis Pola Kecenderungan Kekeringan dengan Metode Standardized Precipitation Index (Spi) dan Metode Palmer Drought Severity Index (Pdsi) di Kabupaten Lombok Barat dan Lombok Tengah. 1–14.

Rahmalina, W., & Novreta. (2020). Peramalan Indeks Kekeringan Kelayang Menggunakan Metode SARIMA dan SPI. Potensi : Jurnal Sipil Politeknik, 22(1), 64–75.

Saidah, H., Budianto, M. B., & Hanifah, L. (2017). Analisa Indeks Dan Sebaran Kekeringan Menggunakan Metode Standardized Precipitation Index (Spi) Dan Geographical Information System (Gis) Untuk Pulau Lombok. Jurnal Spektran, 5(2), 173–179.

Suni, Y. P., Karlina., & Sujono, J. (2022). Analisis Kekeringan Menggunakan Metode SPI dan PDSI pada Daerah Aliran Sungai Liliba. Jurnal Teknik Sipil, 91-104.

Susetyoko, R. (2016). Peramalan Gabungan Rantai Markov dan Model Deret Waktu Pada Kasus Peramalan Kurs Nilai Mata Uang. Jurnal Teknologi Informasi-Aiti, 13(2), 104–115.




DOI: https://doi.org/10.20527/ragam.v2i2.11334

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

RAGAM: Journal of Statistics and Its Application 

Program Studi Statistika, Fakultas MIPA, Universitas Lambung Mangkurat
Jalan A. Yani Km.36, Kampus ULM Banjarbaru, Kalimantan Selatan, Indonesia 70714

e-mail: [email protected]
website: https://ppjp.ulm.ac.id/journals/index.php/ragam

 

Lisensi Creative Commons


RAGAM: Journal of Statistics and Its Application is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.