PEMODELAN GEOGRAPHICALLY WEIGHTED NEGATIVE BINOMIAL REGRESSION (GWNBR) PADA KEJADIAN STUNTING DIiKABUPATEN BARITO KUALA TAHUN 2022

Azkia Azkia

Abstract


Stunting is a condition of malnutrition in toddlers that causes their height to be lower than other children their age. In 2022, South Kalimantan Province has a stunting prevalence of 24.6% and ranks fifteenth in Indonesia. Barito Kuala Regency, one of the regions in South Kalimantan Province, has the highest stunting rate at 33.6% which is included in the Chronic- Acute category (≥ 20%). This study uses the GWNBR model to characterize the factors that cause stunting in Barito Kuala Regency. The GWNBR model will make it easier for researchers to find out the factors that affect stunting in each sub-district. The weight matrix used is a fixed kernel function and an adaptive kernel function. The predictor variables used were the percentage of infant history of complete basic immunization, history of exclusive breastfeeding in infants <6 months, history of low birth weight babies, new visits to pregnant women (K1), sixth antenatal care (ANC) visit (K6), history of pregnant women who received blood supplement tablets, history of infants 6-11 months who received vitamin A, active posyandu and households with access to appropate sanitary facilities.(healthy latrines). The best model results obtained with adaptive gaussian weighting with an AIC value of 167.25.

 Keywords: Stunting Cases, GWNBR model.


Full Text:

PDF

References


Delvia, N., Mustafid, M., & Yasin, H. (2021). Geographically Weighted Negative Binomial Regression Untuk Menangani Overdispersi Pada Jumlah Penduduk Miskin. Jurnal Gaussian, 10(4), 532–543.

Cahyani, P. D. W. I. (n.d.). Pemodelan Jumlah Kematian Ibu Di Provinsi Jawa Timur Tahun 2015 Dengan Geographically Weighted Negative Binomial Regression.

Gujarati, Damodar, 2003, Ekonometri Dasar. Terjemahan: Sumarno Zain, Jakarta: Erlangga.

Johnson, T.R. J.M. HILBE (2011) Negative Binomial Regression, second edition.. Psychometrika 77, 611–612 (2012).

Kemenkes, R. (2023). Hasil Survei Status Gizi Indonesia (SSGI) 2022.

Khumaida, A. (2023). Pendekatan Model Geographically Weighted Regression Pada Kondisi Stunting Di Provinsi Kalimantan Selatan Tahun 2019 Dan 2021. Universitas Lambung Mangkurat.

Montgomery, D.C., Peck, E.A. and Vining, G.G. (2012) Introduction to Linear Regression Analysis. Vol. 821, John Wiley & Sons, Hoboken.

Ni’mah, K., & Nadhiroh, S. R. (2015). Faktor yang berhubungan dengan kejadian stunting pada balita. Media Gizi Indonesia, 10(1), 13–19.

Peta Jalan SDGs Indonesia Menuju 2030. (n.d.). Kementrian Perencanaan Pembangunan Nasional/Badan Perencanaan Pembangunan Nasional.

Pratiwi, E., Pramoedyo, H., Astutik, S., & Fauwziyah, F. (2022). Bahasa Indonesia Modeling Geographically Weighted Negative Binomial Regression (GWNBR) on Stunting Incidence in Malang Regency: Bahasa Indonesia. Jurnal Matematika, Statistika Dan Komputasi, 19(1), 163–171.

Profil Kesehatan Barito Kuala Tahun 2022. (2023). Dinas Kesehatan Kabupaten Barito Kuala.

Ricardo, A., & Carvalho, T. (2013). Geographically Weigted Negative Binomial Regression-Incorporating Overdispersion. Business Media New York: Springer Science.

Supariasa, I. D. N., & Purwaningsih, H. (2019). Faktor-faktor yang mempengaruhi kejadian stunting pada balita di kabupaten malang. Karta Rahardja: Jurnal Pembangunan Dan Inovasi, 1(2), 55–64.




DOI: https://doi.org/10.20527/ragam.v3i1.12796

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

RAGAM: Journal of Statistics and Its Application 

Program Studi Statistika, Fakultas MIPA, Universitas Lambung Mangkurat
Jalan A. Yani Km.36, Kampus ULM Banjarbaru, Kalimantan Selatan, Indonesia 70714

e-mail: [email protected]
website: https://ppjp.ulm.ac.id/journals/index.php/ragam

 

Lisensi Creative Commons


RAGAM: Journal of Statistics and Its Application is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.