ANALISIS PENGARUH INDUSTRI MIKRO DAN KECIL TERHADAP PERTUMBUHAN EKONOMI DI INDONESIA DENGAN PENDEKATAN EKONOMETRIKA REGRESI SPASIAL DATA PANEL
Abstract
Abstract
One indicator to assess the economic condition of a country is Gross Domestic Product (GDP) at the national level or Gross Regional Domestic Product (GRDP) at the regional level. The sector that contributes the most to Indonesia's GDP is the manufacturing industry. One of the most crucial components within the manufacturing sector is the micro and small-scale industry (MSI). The presence of MSIs significantly contributes to economic development, closely tied to the geographical location among regions, thereby exerting spatial influence on the GRDP of a region. Hence, an analysis of GRDP considering spatial aspects is necessary, investigating the impact of the Micro and Small-scale Industry (MSI) sector on economic growth in Indonesia using spatial panel data regression. The spatial models constructed in this study include the Spatial Autoregressive Model (SAR) and Spatial Error Model (SEM) involving fixed-effect influence. This research aims to describe and identify the factors within MSIs that influence economic growth in each province of Indonesia. The results indicate that the appropriate model used is the Spatial Autoregressive Model Fixed Effect (SAR-FE). Overall, there are two independent variables significantly affecting economic growth, namely the number of micro and small-scale industries (X1) and inflation (X6). The results show that an increase in the percentage of these two variables will decrease the economic growth rate.
Keywords: Gross Regional Domestic Product, Economic Growth, Micro and Small Industries, Spatial Autoregressive Model Fixed EffectFull Text:
PDFReferences
Anselin, L. (1999). Spatial Econometrics. Dallas: University of Texas.
Azzahra, S., Srivani, M., Rizky, B., & Sufiawan, N. A. (2023). Analisis Pengaruh Jumlah Unit Usaha Industri Mikro dan Kecil (IMK), Tenaga Kerja IMK dan Pendapatan IMK terhadap Pertumbuhan Ekonomi di Indonesia pada Tahun 2010-2020. Indonesian Research Journal on Education, 3(1), 445-456.
Badan Pusat Statistik. (2021). Laporan Perekonomian Indonesia 2021. Jakarta: BPS Indonesia.
Baltagi, B. (2005). Econometric Analysis of Panel Data (3rd ed.). England: John Wiley & Sons .
Caraka, R. E., & Yasin, H. (2017). Spatial Data Panel. Kuala Lumpur: WADE Publish.
Elhorst, J. P. (2010). Spatial Panel Data Models. New York: Springer.
Greene, W. H. (2002). Econometric Analysis (5th ed.). New Jersey: Prentice Hall.
Gujarati, D. (2004). Basic Econometrics (4th ed.). New York: McGraw-Hill.
Gujarati, D., & Porter, D. (2012). Dasar-dasar Ekonometrika Jilid 2 Edisi 5. Jakarta: Salemba Empat.
LeSage, J. P. (1999). The Theory and Practice of Spatial Econometrics. University of Taledo.
Sriyana, J. (2014). Metode Regresi Data Panel. Yogyakarta: EKONISIA.
Widarjono, A. (2005). Ekonometrika : Teori dan Aplikasi untuk Ekonomi dan Bisnis. Yogyakarta: EKONISIA.
Widarjono, A. (2018). Ekonometrika - Pengantar dan Aplikasinya disertai Panduan Eviews -4/E. Yogyakarta: UPP STIM YKPN.
Wooldridge, J. M. (2013). Introductory Econometrics- A Modern Approach. Andover: Cengage Learning Emea.
Wuryandari, T., Hoyyi, A., Kusumawardani, D. S., & Rahmawati, D. (2014). Identifikasi Autokorelasi Spasial pada Jumlah Pengangguran di Jawa Tengah menggunakan Indeks Moran. Media Statistika, 7(1), 1-10.
DOI: https://doi.org/10.20527/ragam.v3i1.12799
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
RAGAM: Journal of Statistics and Its Application
Program Studi Statistika, Fakultas MIPA, Universitas Lambung Mangkurat
Jalan A. Yani Km.36, Kampus ULM Banjarbaru, Kalimantan Selatan, Indonesia 70714
e-mail: [email protected]
website: https://ppjp.ulm.ac.id/journals/index.php/ragam
RAGAM: Journal of Statistics and Its Application is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.