QUICK ROBUST CLUSTERING USING LINKS (QROCK) UNTUK PENGELOMPOKAN DESA KABUPATEN BANJAR

Muhammad Rizki Shofari

Abstract


Abstract

Accurate village profile planning needs to be done with mapping based on its characteristics. Village grouping based on the characteristics of village facilities and potential or its characteristics based on the Building Village Index indicator can help determine priorities in village development. In this study, mixed data was used, with numerical data grouping using Hierarchical Agglomerative Nesting (AGNES) algorithm and categorical data with Quick Robust Clustering Using Links (QROCK). The resulting clusters are then combined using the QROCK Ensemble algorithm (algCEBMDC). The data is sourced from the 2021 Village Potential Data Collection (PODES) by the Central Statistics Agency in 277 villages in Banjar Regency, including 18 numerical variables and 29 categorical variables. The results of the study obtained  optimal clusters based on the ratio of within-group standard deviation (SW) to between-group standard deviation (SB)  resulting in a ratio of  4.82.10-9 with a threshold of 0.4 to 0.9 resulting in 6  clusters. The  best cluster results are cluster 4 (4 villages) and cluster  3 (14  villages), then cluster 2 (villages) and cluster 1 (186  villages), and clusters that need development priorities are cluser 5 (2 villages) and cluster 6 (1 village) which are outliers based on processing results.

 

Keywords:   Village Grouping,  Cluster, AGNES Algorithm, Quick Robust Clustering Using Links (QROCK), AlgCEBMDC


Full Text:

PDF

References


BPS Kabupaten Banjar (2022), Statistik Daerah Kabupaten Banjar Tahun 2022.

Caliñski, T., and Harabasz, J. (1974), “A Dendrite Method For Cluster Analysis,” Communications in Statistics, 3, 1–27. https://doi.org/10.1080/03610927408827101.

Danapriatna, N., and Setiawan, R. (2005), Pengantar Statistika, Yogyakarta: Graha Ilmu.

Dutta, M., Mahanta, A. K., and Pujari, A. K. (2005), “QROCK: A quick version of the ROCK algorithm for clustering of categorical data,” Pattern Recognition Letters, 26, 2364–2373. https://doi.org/10.1016/j.patrec.2005.04.008.

Guha, S., Rastogi, R., and Shim, K. (1999), “ROCK : Robust Clustering Algorithm for Categorical Attributes,” 512–521.

Hair, J. F., Black, W. C., Babin, B. J., and Anderson, R. E. (2009), Multivariate Data Analysis, New Jersey.

Hanandya, S., Nur A, M., Nur, I. M., and Haris, A. (2021), Perbandingan Metode Single Linkage dan Average Linkage Pada Comparison Of Single Linkage and Average Linkage In The Grouping Of Sub-Districts In Kendal Based On The Potential Of Agriculture Sector, Semarang.

He, Z., Xu, X. i, and Deng, S. (2002), Clustering Mixed Numerical and Categorical Data : A Cluster Ensemble Approach, Harbin.

Johnson, R. A., and Wichern, D. W. (2002), Applied Multivariate Statistical Analysis, New Jersey: Pearson Education, Inc.

KEMENTERIAN DESA, P. D. T. D. T. (2015), INDEKS DESA MEMBANGUN 2015, Jakarta.

Lubis, I. A., Nugroho, S., and Swita, D. B. (n.d.). “KAJIAN METODE PENGKLASTERAN HIRARKI DENGAN BERBAGAI PENGUKURAN JARAK,” e-Jurnal Statistika, 42–53.

MENTERI DESA, P. D. T. D. T. R. I. (2016), Permendesa Nomor 2 Tahun 2016.

Ramdhany, R. (2018), “PENGELOMPOKAN DESA DI KABUPATEN BONDOWOSO BERDASARKAN DATA CAMPURAN NUMERIK DAN KATEGORIK MENGGUNAKAN METODE ENSEMBEL ROCK,” Surabaya: INSTITUT TEKNOLOGI SEPULUH NOPEMBER.

Ronald E. Walpole (1995), Pengantar statistika, Jakarta: PT Gramedia Pustaka Utama.

Sharma, S. (1996), Applied Multivariate Techniques, New York: John Wiley and Sons.

Sharpe, N. R., De Veaux, R. D., and Velleman, P. F. (2018), Business statistics.

Sihombing, P. R., Arsani, A. M., Angraini, W., and Wisnu Pratiko (2022), “IMPLEMENTASI MODEL SEM PADA HUBUNGAN IPM, IPD DAN IDM,” Jurnal Bayesian : Jurnal Ilmiah Statistika dan Ekonometrika, 2, 107–115. https://doi.org/10.46306/bay.v2i2.

Späth, H. (1982), Cluster Analysis Algorithms for Data Reduction and Classification of Objects, New York: Halsted Press.

Suguna, J., and Arul Selvi, M. (2012), “Ensemble Fuzzy Clustering for Mixed Numeric and Categorical Data,” International Journal of Computer Applications, Foundation of Computer Science, 42, 19–23. https://doi.org/10.5120/5672-7705.




DOI: https://doi.org/10.20527/ragam.v3i1.12805

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

RAGAM: Journal of Statistics and Its Application 

Program Studi Statistika, Fakultas MIPA, Universitas Lambung Mangkurat
Jalan A. Yani Km.36, Kampus ULM Banjarbaru, Kalimantan Selatan, Indonesia 70714

e-mail: [email protected]
website: https://ppjp.ulm.ac.id/journals/index.php/ragam

 

Lisensi Creative Commons


RAGAM: Journal of Statistics and Its Application is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.