PEMODELAN GEOGRAPHICALLY WEIGHTED REGRESSION (GWR) MENGGUNAKAN PEMBOBOT KERNEL PADA KASUS TINGKAT PENGANGGURAN TERBUKA DI KALIMANTAN
Abstract
Abstract
Unemployment is one of the serious problems in Indonesia's economic development. This unemployment describes human resources that have not been utilized optimally, as a result of which people's productivity and income have not been maximized, this can also be one of the causes of poverty and other social problems. This study aims to find out the general picture of the open unemployment rate in the Kalimantan region, get the best model and factors that influence the open unemployment rate and illustrate it through thematic maps. The study began with testing assumptions and spatial effects then continued with testing global regression modeling and Geographically Weighted Regression. The weighting function used in this study is adaptive gaussian kernel. The variable that has a positive effect on the open unemployment rate in the Kalimantan region is population density. While the variable that negatively affects the open unemployment rate is the Labor Force Participation Rate.
Keywords: Open Unemployment Rate, Kalimantan Island, Spatial, GWR
Full Text:
PDFReferences
Naf'an, 2014. Ekonomi Makro : Tinjauan Ekonomi Syariah. Yogyakarta: Graha Ilmu.
Hasan, M., 2000. Pokok-Pokok Materi Statistik 1 (Statistika Deskriptif). Jakarta: PT Bumi Aksara.
Rahman, A., 2019. Pengantar Kartografi & Sistim Informasi Geografis (Teori dan Praktik). s.l.:s.n.
Bekti, R. D., 2012. Autokorelasi Spasial untuk Identifikasi Pola Hubungan Kemiskinan di Jawa Timur. Volume vol. 3, No.1. 217-227.
Putri, A. & Salamah, M., 2013. Pemodelan Kasus Balita Gizi Buruk di Kabupaten Bojonegoro dengan Geographically Weighted Regression. Volume Vol. 2, No.1.
Badan Pusat Statistik. 2022. Statistika Indonesia. Jakarta: BPS.
Nalim & Salafudin., 2012. Statistika Deskriptif. Pekalongan: STAIN.
Muslim & Rifqi, M., 2014. Pengangguran Terbuka dan Determinannya. Jurnal Ekonomi dan Studi Pembangunan Volume 15, pp. 48-54.
Agustina, M. et al., 2022. Pemodelan Faktor-Faktor yang Mempengaruhi Tingkat Pengangguran Terbuka di Indonesia Dengan Pendekatan Regresi Spasial. PROSIDING SEMINAR NASIONAL SAINS DAN TERAPAN (SINTA).
Erdkhadifa, R., 2021. Pemodelan Spasial Tingkat Pengangguran Terbuka di Jawa Timur dengan Geographically Weighted Regression. Statistika, Vol. 21 No. 2, pp. 85-97.
Kusumaningrum , N., Permana, J. N., K. & Nohe, D. A., 2022. Pemodelan Tingkat Pengangguran Terbuka di Pulau Kalimantan dengan Regresi Data Panel. Prosiding Seminar Nasional Matematika, Statistika, dan Aplikasinya, pp. 196-210.
DOI: https://doi.org/10.20527/ragam.v3i1.12822
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
RAGAM: Journal of Statistics and Its Application
Program Studi Statistika, Fakultas MIPA, Universitas Lambung Mangkurat
Jalan A. Yani Km.36, Kampus ULM Banjarbaru, Kalimantan Selatan, Indonesia 70714
e-mail: [email protected]
website: https://ppjp.ulm.ac.id/journals/index.php/ragam
RAGAM: Journal of Statistics and Its Application is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.