DETERMINAN KEJADIAN KISTA OVARIUM PADA WANITA USIA SUBUR DI KABUPATEN BALANGAN MENGGUNAKAN REGRESI LOGISTIK BINER

Dhea Arinda, Dewi Anggraini, Meitria Syahadatina Noor

Abstract


Ovarian cysts are the most common gynecologic cases of many gynecologic cancers. Ovarian cyst is a disease that causes many deaths. This high mortality rate is due to the fact that the disease is initially asymptomatic and only causes complaints when metastases have occurred so that 60-70% of patients come at an advanced stage. Based on the results of the 2007 Basic Health Research survey, the number of patients with ovarian cysts in South Kalimantan was 1,2% of 56 respondents. This study took a case study in a district in South Kalimantan, namely Balangan Regency with the aim of explaining the characteristics of the distribution of ovarian cysts and the factors that influence the incidence of ovarian cysts in women of childbearing age in Balangan Regency using binary logistic regression method. Based on descriptive statistical analysis, it was found that the distribution characteristics of ovarian cyst sufferers were from 59 people who had checked for cyst symptoms at Balangan Hospital, 46 people were known to have cysts, while 13 people were not known to have cysts. Based on binary logistic regression analysis, the factors that influence the incidence of ovarian cysts for data on the incidence of ovarian cysts in Balangan Hospital are parity and employment status, while the age factor has no significant effect. Using the Odss Ratio (OR) parity value, patients with nulliparous status had a 0,033 higher risk of developing ovarian cysts than patients with multiparous status. using the OR value of the occupational status patients who had a job had a 0,014 higher risk of developing ovarian cysts than patients who did not have a job.

 

Keywords:   Ovarian cysts, Logistic binary, Odds Ratio.

Full Text:

PDF

References


Agresti, A. 1990. Categorical Data Analysis. New York. L, John Wiley and Sons.

Agresti, A. 2007. An Introduction to Categorical Data Analysis: Second Edition. In An Introduction to Categorical Data Analysis: Second Edition. John Wiley & Sons, INC.

https://doi.org/10.1002/0470114754

Agresti, A. ( 2007). Wiley-Inter-sciense A John. An Introduction to Categorical Data ( 2nd Edition).

Andang, Tantrini. 2013. 45 penyakit musuh kaum perempuan. Yogyakarta : Rapha Publishing. Departemen Kesehatan Republik Indonesia.

A. Wawan & M Dewi. 2011. Teori & Pengukuran Pengetahuan, Sikap Dan Prilaku Manusia (II). Yogyakarta: Nuha Medika.

Herawati Anita, Kusumawati Linda, H. A. (2019). Hubungan Siklus Menstruasi Dengan Angka Kista Ovarium Pada Pasien RSUD “X” Banjarmasin. Dinamika Kesehatan Jurnal Kebidanan Dan Keperawatan, 10(1), 1–6.

Hosmer, L. d. (2000). Second Edition. New York: John Wiley and Sons., Inc. Applied Logistic Regression.

Johnson, R. A., Wichern, D. W., & Hall, P. P. (n.d.). 2007. Statistical Analysis. Pearson Prentice Hall : New Jersey.

Manuaba, Ida dkk, 2010. Imaging Ginekologi Onkologi.Indung telur, Kista, serta ggangguan Lainnya. Jakarta : CV Sagung

Maulidya, Y., & Julianti, N. 2018. Faktor - Faktor yang Berhubungan dengan Kejadian Kista Ovarium di RSUD Kota Bekasi Tahun 2018.

Walpole, Ronald E. 1995. Pengantar Statistika. Edisi ke-3. PT. Gramedia Pustaka Utama. Jakarta. 1995.

Wawan,A & Dewi, M. 2010. Teori dan KarakteristikKista.Jakarta : Rineka Cipta

World Health Organization (WHO). 2016. Kista Ovarium

Yanti, M. 2018. Analisis Faktor-Faktor Yang Memengaruhi Kejadian Kanker Ovarium Di Rumah Sakit Umum Daerah Dr. Zainoel Abidin Banda Aceh Tahun 2017. Sumatera Utara.




DOI: https://doi.org/10.20527/ragam.v1i1.7409

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

RAGAM: Journal of Statistics and Its Application 

Program Studi Statistika, Fakultas MIPA, Universitas Lambung Mangkurat
Jalan A. Yani Km.36, Kampus ULM Banjarbaru, Kalimantan Selatan, Indonesia 70714

e-mail: [email protected]
website: https://ppjp.ulm.ac.id/journals/index.php/ragam

 

Lisensi Creative Commons


RAGAM: Journal of Statistics and Its Application is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.