PENGGUNAAN RUMUS STIRLING DAN FUNGSI PEMBANGKIT MOMEN PADA PROSES PEMBUKTIAN DISTRIBUSI NORMAL SEBAGAI PENDEKATAN DISTRIBUSI BINOMIAL

Raden Gunawan Santosa, Nugroho Agus Haryono

Abstract


Research in mathematics and statistics can be categorized into two main types: analytical-theoretical research and applied-practical research, both of which make significant contributions to statistical analysis. This research is particularly relevant to the analysis of large-scale binary variables, where the binomial distribution is often used as the basis for computation. In such cases, the normal distribution can serve as an approximation to the binomial distribution, reducing the complexity of calculations. This study aims to demonstrate that the normal distribution can be used as an approximation for the binomial distribution. Two proof methods are presented: one utilizing the moment-generating function and the other employing Stirling's formula. The methodology involves a literature review by gathering and analyzing various relevant references. The findings indicate that as the value of 𝑛 n increases, the difference between calculations using the binomial and normal distributions approaches zero exponentially.


Keywords


Binomial distribution; Normal distribution;moment generating function;Stirling formula

Full Text:

PDF

References


Diana. (2017). Distribusi Binomial sebagai Estimasi Probabilitas Kesuksesan pada Uji Coba Kualitas Layanan Sistem Informasi. Jurnal Ilmiah MATRIK Vol. 19 No. 3 , Desember 2017, 227-236.

Hermawan, T., Fajarini, N. m., & Utami, N. (2019). Statistical Reasoning Tentang Kebijakan Satu Anak per Keluarga di Negeri Tirai Bambu (Cina). Jurnal Intersections Volume 4, No. 2, Agustus 2019 P-ISSN 2685-7952, 22-32.

Hogg, R. V., McKean, J. W., & Craig, A. T. (2019). Introduction to Mathematical Statistics Eight Edition. Boston: Pearson.

Loban, J. M., Sy, Y. P., & Tang, M. I. (2023). Uji Distribusi Binomial pada Lama Studi Mahasiswa. SEPREN: Journal of Mathematics Education and Applied Vol. 4, No. 2, May 2023 E-ISSN: 2686-4452, 140-146.

Mann, P. S., & Lacke, C. J. (2021). Introductory Statistics 10th Edition. John Wiley & Sons, Inc.

Musadi, & Kurniawati, I. (2023). Normal Distribution Approximation Through Binomial and Poisson Distribution. Journal of Mathematics and Mathematic EducationVolume 13, No. 1, June 2023 p-ISSN 2089-8878 e-ISSN 2715-8276, 108-122.

Pebriyanto, A., Sartika, D., Ruspandi, I., Zihani, N., Sam, M., Gifari, M., . . . Pradana, R. (2021). Distribusi Binomial sebagai Pengukuran Keberhasilan dan Kegagalan Produksi Home Industri @One Hand Made. Buletin of Applied Industrial Engineering Theory, Vol 2 No. 2, Sept 2021 p-ISSN 2720-9628 e-ISSN 2720-961x.

Setyaningsih, A., Gunawan, M. I., Taher, R. A., & Fauzi, L. (2021). Metode Binomial mengenai Keberhasilan Pemerintah dalam Mengatasi Kemacetan di Ibukota Jakarta. Buletin of Applied Industrial Engineering Theory , Vol 2 No. 1, Maret 2021 p-ISSN 2720-9628 e-ISSN 2720-961x.

Sitopu, J. W., & Siswadi. (2022). Fungsi Pembangkit Momen dari Distribusi Probabilitas Diskrit. FARABI: Jurnal Matematika dan Pendidikan Matematika (JMPM) Volume 5, Nomor 2, Desember 2022, p-ISSN 2623-2332 e-ISSN 2798-5474, 144-153.

Walck, C. (10 September 2007). Hand-book on Statistical Distributions for Experimentalist, Particle Physics Group Fysikum Univ of Stockholm. Stockholm: University of Stockholm.

Walpole, R. E., Myers, R. H., Myers, S. L., & Ye, K. (2012). Probability & Statistics for Engineers & Scientist Ninth Edition. Boston: Prentice Hall.




DOI: https://doi.org/10.20527/epsilon.v18i2.14164

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN (EPSILON: JOURNAL OF PURE AND APPLIED MATHEMATICS)

Indexed by:

          

 

EDITORIAL OFFICE 

           

 

 

 

Creative Commons License
JMMTE is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.