ANTI FUZZY SUBSEMIRING

Saman Abdurrahman, Cendikia Hira, Alya Hanifah Arif

Abstract


When the first operation’s inverse axiom is deleted from the ring,  an algebraic structure, the semiring, is generated. Subsemiring is one of the subjects covered in semiring. The concepts of fuzzy subsemiring, anti subsemiring fuzzy semiring, and complement are introduced in this paper. In addition, the anti-subsemiring fuzzy semiring, a wedge, or a combination of two or more fuzzy anti-subsemiring associated with a non-empty subset of the semiring whose membership criteria are defined by the membership value of the zero elements will be discussed.


Keywords


semiring, fuzzy anti-subsemiring, complement, membership

Full Text:

PDF

References


Abdurrahman, S. (2012). Ideal Fuzzy Near-Ring. Jurnal Epsilon, 6(2), 13–19. http://ppjp.ulm.ac.id/index.php/epsilon/article/view/83/68

Abdurrahman, S. (2020a). Karakteristik subsemiring fuzzy. Jurnal Fourier, 9(1), 19–23. https://doi.org/10.14421/fourier.2020.91.19-23

Abdurrahman, S. (2020b). ω – fuzzy subsemiring.pdf. Jurnal Matematika, Sains, Dan Teknologi, 21(1), 1–10. https://doi.org/https://doi.org/10.33830/jmst.v21i1.673.2020

Abdurrahman, S. (2021). Interior ideal fuzzy semiring. Epsilon: Jurnal Matematika Murni Dan Terapan, 15(2), 116–123. https://doi.org/ttps://doi.org/10.20527/epsilon.v15i2.4894

Ahsan, J., Mordeson, J. N., & Shabir, M. (2012a). Fundamental Concepts. In Fuzzy Semirings with Applications to Automata Theory (pp. 3–13). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-27641-5_1

Ahsan, J., Mordeson, J. N., & Shabir, M. (2012b). Fuzzy Ideals of Semirings. In Fuzzy Semirings with Applications to Automata Theory (pp. 15–29). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-27641-5_2

Anitha, B. (2019). On the anti fuzzy subsemirings under t-norms. Malaya Journal of Matematik, 7(2), 295–297. https://doi.org/10.26637/mjm0702/0022

Biswas, R. (1990). Fuzzy subgroups and anti fuzzy subgroups. Fuzzy Sets and Systems, 35(1), 121–124. https://doi.org/https://doi.org/10.1016/0165-0114(90)90025-2

Caggiano, A. (2019). Fuzzy Logic BT - CIRP Encyclopedia of Production Engineering. In S. Chatti, L. Laperrière, G. Reinhart, & T. Tolio (Eds.), Fuzzy Logic (pp. 760–766). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-53120-4_6555

Ésik, Z. (2008). Iteration Semirings. In M. Ito & M. Toyama (Eds.), Developments in Language Theory (pp. 1–20). Springer Berlin Heidelberg.

Golan, J. S. (1999). Hemirings and Semirings: Definitions and Examples. In Semirings and their Applications (pp. 1–18). Springer Netherlands. https://doi.org/10.1007/978-94-015-9333-5_1

Jezewski, M., Czabanski, R., & Leski, J. (2017). Introduction to Fuzzy Sets. In P. Prokopowicz, J. Czerniak, D. Mikołajewski, Ł. Apiecionek, & D. Ślȩzak (Eds.), Theory and Applications of Ordered Fuzzy Numbers: A Tribute to Professor Witold Kosiński (pp. 3–22). Springer International Publishing. https://doi.org/10.1007/978-3-319-59614-3_1

Mandal, D. (2014). Fuzzy Ideals and Fuzzy Interior Ideals in Ordered Semirings. Fuzzy Inf. Eng, 6, 101–114. http://jmre.dlut.edu.cn

N. Mordeson, J., R. Bhutani, K., & Rosenfeld, A. (2005). Fuzzy Subsets and Fuzzy Subgroups. 39, 1–39. https://doi.org/10.1007/10936443_1

Nasehpour, P. (2020). Some remarks on semirings and their ideals. Asian-European Journal of Mathematics, 13(1), 1–14. https://doi.org/10.1142/S1793557120500023

Saravanan, V., & Sivakumar, D. (2011). A Study on Anti - Fuzzy Subsemiring of a Semiring. International Journal of Computer Applications, 35(5), 44–47. https://doi.org/10.11648/j.ajam.20150304.14

Saravanan, V., & Sivakumar, D. (2012). A Study on anti - Fuzzy Normal Subsemiring of a Semiring. International Mathematical Forum, 7(53), 2623–2631. https://doi.org/10.11648/j.ajam.20150304.14

Zadeh, L. A. (1965). Fuzzy Sets. Information and Control, 8(3), 338–353. https://doi.org/https://doi.org/10.1016/S0019-9958(65)90241-X




DOI: https://doi.org/10.20527/epsilon.v16i1.5443

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN

Indexed by:

          

 

EDITORIAL OFFICE 

           

 

 

 

Creative Commons License
JMMTE is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.