Analisis Kestabilan Global Model Epidemik SIRS menggunakan Fungsi Lyapunov

Yuni Yulida, Faisal Faisal, Muhammad Ahsar Karim

Abstract


This paper presents the SIRS epidemic model. Furthermore, the model is investigated the existence of the equilibrium point, and the global stability of the equilibrium point using the function Lyapunov.

Keywords


SIRS Epidemic Model, equilibrium point, global stability, Lyapunov function

Full Text:

PDF

References


Bazaraa, M.S., Sherali, H.D., and Shetty, C.M., 1993, Nonlinear

Programming Theory and Algorithms, John Wiley & Sons. Inc, New York

Becerra, M. Victor, 2008. La Salle’s Invariant Set Theory,

http://www.personal.rdg.ac.uk/~shs99vmb/notes/anc/lecture3 .pdf

Boyd, Stephen, 2008, Basic Lyapunov Theory, Stanford University,

http://www.stanford.edu/class/ee363/lyap .pdf

Brauer, F. and Chavez, C.C., 2001, Mathematical Models in Population

Biology and Epidemology, Springer, New York.

Chong, K.P. and Stainslow, H. Z., 1996, An introduction to optimization, John Wiley & Sons. Inc, New York.

Korobeinikov, A. and Maini, P, K., 2004, A Lyapunov Function and Global Properties For SIR and SEIR Epidemiological Models With Nonlinear

Incidence, Mathemetical Bioscience and engineering , Vol. 1 Number 1

pp. 57-60.

Korobeinikov A., 2006, Lyapunov Function and Global Stability For SIR and SIRS Epidemiological Models With Nonlinear Tranmission. Bulletin of Mathematical Biology , 30 pp.615–626, DOI 10.1007/s11538-005-9037-9

Leon’s, C.V.D., 2009, Constructions of Lyapunov Functions for Classics SIS, SIR and SIRS Epidemic Model With Variable Population Size, Mat-Red Foro, Vol. 26, www.red-mat.unam.mx/foro/volumenes/Vol026.

Leon, J. S., 1998, Aljabar Linear Dan Aplikasinya , Edisi kelima, Alih

bahasa oleh Bondan, A., Erlangga, Jakarta.

Luenberger, D, G., 1979, Introduction to dynamical system theory, models, and applications, John Wiley & Sons, Inc, Canada.

Perko, L., 1991, Differential Equations and Dynamical Systems, Springer-Verlag, New York.

Verhulst, F., 1990, Nonlinear Differential Equations and Dynamical

Systems, Springer-Verlag, Berlin.

Wiggins, S., 1990, Introduction to Applied Nonlinear Dynamical Systemsand Chaos, Springer-Verlag, New York.




DOI: https://doi.org/10.20527/epsilon.v5i2.73

Refbacks

  • There are currently no refbacks.


Copyright (c) 2011 JURNAL MATEMATIKA MURNI DAN TERAPAN EPSILON

Indexed by:

          

 

EDITORIAL OFFICE 

           

 

 

 

Creative Commons License
JMMTE is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.