Pemodelan Calponin Ikan Gabus (Channa striata) dengan Phyre2 dan Interaksi dengan Protein Lain

Mirza Maulana Ahmad, Noer Komari

Abstract


Knowledge of the three-dimensional structure of proteins is very important to understand their character and function at the molecular level. Determination of protein structure in the laboratory is expensive and relatively difficult because it requires sophisticated instruments and takes a long time. As an alternative, an in silico approach can be used to predict the three-dimensional structure of proteins, namely the fold recognition method. The purpose of this study was to create a three-dimensional structure model of snakehead fish (Channa striata) calponin protein using the Phyre2 web server. The target protein sequence was obtained from UniProt KB with code K9LH64. The results of the study showed that the template for building the model was the c1wynA code. The results of the model (MP) evaluation obtained a coverage value was 45%, a confidence value was 100%, and an identity value was 69%. Validation of the model (MP) using the PROCHECK program showed the model was in the most favoured residue plot of 82.4%. This model deserves to be used as a model for calponin protein of snakehead fish, because the disallowed area was below 15%. The results of the analysis of interactions with other proteins using STRING-DB obtained the interaction model (MP) with Actin assembly-inducing protein (ACTA2) was 0.791; and Tropomyosin (TPM1) was 0.786. The results of molecular docking using PatchDock obtained the value of Atomic Contact Energy (ACE) for the calponin protein model (MP)-ACTA2 was 372.76 kJ/mol; Calponin model protein (MP)-TPM1 was 406.93 kJ/mol. The interactions that occured in the calponin model (MP)-ACTA2 were hydrogen bonds at residues Gly-41, Glu-60, Arg-64, Arg-66, Pro-67, Gly-68, Lys-71 and hydrophobic bonds at Arg-64, Lys- 71, Lys-72, Ile-73, Va-138. The interactions model of calponin model (MP)-TPM1 were hydrogen bonding at residues Ser-13, Lys-71, Ala-95, Tyr-96, Ser-136, Arg-137, Arg-150 and hydrophobic bonds at residues Leu-12, Ala-14, Lys-71, Ala-95, Val-138, Arg-150, Phe-152. Keywords: fold recognition, Phyre2 , 3D structure protein, calponin, protein-protein interaction

Full Text:

PDF

References


Ahmed, A., & Gohlke, H. (2009). MULTI-SCALE MODELING OF MACROMOLECULAR CONFORMATIONAL CHANGES. 1 St International Conference on Mathematical and Computational Biomedical Engineering, 3(1), 1–4.

Ayyildiz, D., & Piazza, S. (2019). Introduction to Bioinformatics. Methods in Molecular Biology, 1986, 1–15. https://doi.org/10.1007/978-1-4939-9442-7_1

Capra, J. A., & Singh, M. (2007). Predicting functionally important residues from sequence conservation. Bioinformatics, 23(15), 1875–1882. https://doi.org/10.1093/bioinformatics/btm270

Duhovny, D., Nussinov, R., & Wolfson, H. J. (2002). Efficient Unbound Docking of Rigid Molecules.

Fakih, T. M., Arumsari, A., Dewi, M. L., Hazar, N., & Syarza, T. M. (2021). Identifikasi Mekanisme Molekuler Senyawa Ftalosianina sebagai Kandidat Photosensitizer pada Terapi Fotodinamika secara In Silico. ALCHEMY Jurnal Penelitian Kimia, 17(1), 37. https://doi.org/10.20961/alchemy.17.1.41184.37-42

Guruprasad, K., Reddy, B. V. B., & Pandit, M. W. (1990). Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. In Protein Engineering (Vol. 4, Issue 2). http://peds.oxfordjournals.org/

Ikai, A. (1980). Thermostability and Aliphatic Index of Globular Proteins. In COMMUNICATION J. Biochem (Vol. 88).

Islam, A. H. M. M., Ehara, T., Kato, H., Hayama, M., Kobayashi, S., Igawa, Y., & Nishizawa, O. (2004). Calponin h1 expression in renal tumor vessels: Correlations with multiple pathological factors of renal cell carcinoma. Journal of Urology, 171(3), 1319–1323. https://doi.org/10.1097/01.ju.0000101969.34419.57

Islam, A. H. M. M., Ehara, T., Kato, H., Hayama, M., & Nishizawa, O. (2004). Loss of calponin h1 in renal angiomyolipoma correlates with aggressive clinical behavior. Urology, 64(3), 468–473. https://doi.org/10.1016/j.urology.2004.03.054

Komari, N., Hadi, S., & Suhartono, E. (2020). Pemodelan Protein dengan Homology Modeling menggunakan SWISS-MODEL Protein Modeling with Homology Modeling using SWISS-MODEL. 2(2), 65–70.

Kyte, J., & Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology, 157(1), 105–132. https://doi.org/10.1016/0022-2836(82)90515-0

le Guilloux, V., Schmidtke, P., & Tuffery, P. (2009). Fpocket: An open source platform for ligand pocket detection. BMC Bioinformatics, 10. https://doi.org/10.1186/1471-2105-10-168

Maiti, S., & Banerjee, A. (2021). Epigallocatechin gallate and theaflavin gallate interaction in SARS-CoV-2 spike-protein central channel with reference to the hydroxychloroquine interaction: Bioinformatics and molecular docking study. Drug Development Research, 82(1), 86–96. https://doi.org/10.1002/ddr.21730

Sotriffer, C. A. (2016). Theory, Methods, Challenges, and Applications. In In Silico Drug Discovery and Design: Theory, Methods, Challenges, and Applications.

Thenawidjaja, M., Wangsa, T. I., & Debbie, S. R. (2017). Protein Serial Biokimia Mudah dan Menggugah. In M. and W. T. and D. S. Thenawidjaja (Ed.), Jakarta: Grasindo (Vol. 35).

Tomizawa, T., Kigawa T., Koshiba S., Inoue M., & Yokoyama S. (2005, August 15). RCSB PDB - 1WYN: Solution structure of the CH domain of human calponin-2. Nature Structural Biology. https://doi.org/10.2210/pdb1wyn/pdb

Walker, J. M. (2002). The Protein Protocols Handbook (J. M. Walker, Ed.; second edition). Human Press Inc.

Wijaya, H., & Hasanah, F. (2016). PREDIKSI STRUKTUR TIGA DIMENSI PROTEIN ALERGEN PANGAN DENGAN METODE HOMOLOGI MENGGUNAKAN PROGRAM SWISS-MODEL (The Prediction of Three-Dimensional Structure from Food Allergen Protein Through Homology Method Using SWISS-MODEL Program). Prediksi Struktur Tiga Dimensi Protein Alergen Pangan Dengan Metode Homologi Menggunakan Program Swiss-Model, 07(02), 83–94. https://doi.org/http://dx.doi.org/10.36974/jbi.v7i2.692

Yuniastuti, A., Susanti, R., M, D., K, F., S, C., M, A., K, R., M, S., A.S, R., A, R., & NA, A. (2021). STUDI IN SILICO INTERAKSI GEN REG1B DENGAN GROWTH HORMON (GH), INSULINE LIKE GROWTH FACTOR (IGF) DAN TIROID SEBAGAI PREDIKTOR KEJADIAN STUNTING.




DOI: https://doi.org/10.20527/jns.v2i1.4790

Refbacks

  • There are currently no refbacks.


Lisensi Creative Commons

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.

Diterbitkan oleh FMIPA Universitas Lambung Mangkurat