The Effect of Creative Problem-Solving Model to Enhance Scientific Creativity: Study in Static Fluid Physics Learning
Abstract
The purpose of this study is to ascertain how applying the Creative Problem-Solving model in physics classes affects students' scientific creativity when studying static fluids and how applying the model can improve students' scientific creativity. This study employed a quasi-experimental method, with the population of focus being 11th-grade science students at SMAN 4 South Tangerang, totaling 200 students. The sample in this study involves 78 students selected through the purposive sampling technique and divided into two groups (experimental and control), each comprising 39 students. Both groups were assessed for their skills through pretests and post-tests. The instruments used in this research consisted of 5 structured essay questions referring to three indicators of scientific creativity dimensions developed by Hu and Adey. The result of this study shows that the data generated, based on the Mann-Whitney U test, indicates a significant difference between the post-test scores of the two groups, with a Sig. Value of 0.000, which is below 0.05. The N-gain results also showed a gain of 0.56 in the experimental group and 0.43 in the control group. In conclusion, the Creative Problem-Solving model influenced students' scientific creativity, and it effectively improved students' scientific creativity. The research implications suggest that teachers should implement this teaching method to improve students' scientific creativity skills, enabling them to actively and skillfully address various complex problems in everyday life.
Keywords
Full Text:
PDFReferences
Astutik, S., Mahardika, I. K., Indrawati, Sudarti, & Supeno. (2020). HOTS student worksheet to identification of scientific creativity skill, critical thinking skill and creative thinking skill in physics learning. Journal of Physics: Conference Series, 1465(1). https://doi.org/10.1088/1742-6596/1465/1/012075
Cerisola, S. (2018). Multiple creative talents and their determinants at the local level. Journal of Cultural Economics, 42(2), 243–269. https://doi.org/10.1007/s10824-017-9299-8
Charyton, C., Clark, T. M., Ferrer, A., Harding, A., Newton, H., Perry, R. J., Francis, J., & Osiniusi, S. (2015). Reflections of our conversation among the cultures in science and art. Creativity and Innovation Among Science and Art (hal. 205–215). Springer London. https://doi.org/10.1007/978-1-4471-6624-5_10
Creative Education Foundation. (2015). Educating for creativity - level 1 - resource guide. Creative Education Foundation, 74.
Creswell, J. W., & Creswell, J. D. (2018). Research design : Qualitative, quantitative and mixed methods approaches. In Introducing English Language. SAGE Publications, Inc. https://doi.org/10.4324/9781315707181-60
Fadllan, A., Hartono, H., Susilo, S., & Saptono, S. (2022). Pengembangan tes kreativitas saintifik fluida statis berbasis scientific creativity structure model. Prosiding Seminar Nasional Pascasarjana, 72–78.
Fadllan, A., Hartono, Susilo, & Saptono, S. (2019). Analysis of students’ scientific creativity and science process skills at UIN Walisongo Semarang. Journal of Physics: Conference Series, 1321(3). https://doi.org/10.1088/1742-6596/1321/3/032099
Fahrisa, N. (2022). Creative problem-solving (cps) learning to improve ability an strudent ’ s critical and creative thinking on science materials. Journal of Enviromental and Science Education, 2(2), 98–105. http://journal.unnes.ac.id/sju/index.php/jese
Fatimah, S. I., Astutik, S., & Supeno. (2019). Pengaruh lks berbantuan scaffolding dalam model creative problem-solving (cps) terhadap kreativitas ilmiah fisika siswa sma. Jurnal Pembelajaran Fisika, 8(3), 187–193.
Field, A. (2018). Discovering statistic using ibm spss statistic 5th. SAGE Edge.
Haim, K., & Aschauer, W. (2022). Fostering scientific creativity in the classroom: The concept of flex-based learning. International Journal of Learning, Teaching and Educational Research, 21(3), 196–230. https://doi.org/10.26803/ijlter.21.3.11
Hake, R. R. (1999). Analyzing Change/Gain Scores. Dept of Physcs Indiana University.
Haryandi, S., Suyidno, S., Misbah, M., Dewantara, D., Mahtari, S., & Ibrahim, M. A. (2021). Scientific creativity: A bibliometric review and analysis. Momentum: Physics Education Journal, 10-20.
Hu, W., & Adey, P. (2002). A scientific creativity test for secondary school students. International Journal of Science Education, 24(4), 389–403. https://doi.org/10.1080/09500690110098912
Lailiyah, Q., & Suliyanah. (2018). Profil keterampilan berpikir kreatif ilmiah siswa pada materi momentum dan impuls kelas xi sma negeri 1 tarik sidoarjo. Jurnal Inovasi Pendidikan Fisika, 07(01), 47–50.
Li, Z., Cai, X., Kuznetsova, M., & Kurilova, A. (2022). Assessment of scientific thinking and creativity in an electronic educational environment. International Journal of Science Education, 44(3), 463–486. https://doi.org/10.1080/09500693.2022.2032863
Malisa, S., Bakti, I., & Iriani, R. (2018). Model pembelajaran creative problem-solving (cps) untuk meningkatkan hasil belajar dan kemampuan berpikir kreatif siswa. Vidya Karya, 33(1), 1. https://doi.org/10.20527/jvk.v33i1.5388
Morgan, G. A., Leech, N. L., Gloeckner, G. W., & Barrett, K. C. (2012). IBM SPSS for Introductory Statistics: Use and Interpretation (Fourth Edi). Taylor & Francis. http://books.google.com/books?id=yhgGfAEACAAJ&pgis=1
Muhammad, N., Taib, S., Misbah, M., & Zulfah, R. (2023). Bibliometric analysis: Development of electronic teaching materials for physics laboratory courses to train scientific creativity of prospective physics teachers. Kasuari: Physics Education Journal (KPEJ), 6(1), 46-56.
Mukhambetalina, N. B., & Dalbergenova, L. E. (2022). Тhe development of personal creativity as a scientific and practical problem. Bulletin of Shokan Ualikhanov Kokshetau University. Philological Series, 2022(3), 100–108.
https://doi.org/10.59102/kufil/2022/iss3pp100-108
Mustika, M., Maknun, J., & Feranie, S. (2019). Case study : analysis of senior high school students scientific creative, critical thinking and its correlation with their scientific reasoning skills on the sound concept. Journal of Physics: Conference Series, 1157(3). https://doi.org/10.1088/1742-6596/1157/3/032057
Oh, J.-Y. (2022). Understanding the scientific creativity based on various perspectives of science. Axiomathes, 32(6), 907–929. https://doi.org/10.1007/s10516-021-09553-8
Pratiwi, Y. D., Lesmono, A. D., & Astutik, S. (2018). Model pembelajaran creative problem-solving (cps) untuk meningkatkan penguasaan konsep dan keterampilan kreativitas ilmiah siswa. Jurnal Pembelajaran Fisika, 7(4), 356–363.
Rif ’at, M. F., Wati, M., & Suyidno, S. (2020). Developing students’ responsibility and scientific creativity through creative responsibility based learning in learning physics. Berkala Ilmiah Pendidikan Fisika, 8(1), 12. https://doi.org/10.20527/bipf.v8i1.7879
Rizqi, Prabowo, & Kirana, T. (2019). The importance of scientific creativity for students on science learning. IOSR Journal of Research & Method in Education (IOSR-JRME), 9(3), 12–15. https://doi.org/10.9790/1959-0903041215
Saputra, H., Mansyur, J., & Supriyatman. (2021). The Effect of the Conceptual Problem Solving (CPS) Approach on Students’ the Representation and Problem-Solving Ability in Physics. Jurnal Pendidikan Fisika Tadulako Online, 9(1), 7–14.
Saregar, A., Cahyanti, U. N., Misbah, M., Susilowati, N. E., Anugrah, A., & Muhammad, N. (2021). CORE learning model: Its effectiveness towards students' creative thinking. International Journal of Evaluation and Research in Education, 10(1), 35-41.
Satriani, S., & Wahyuddin, W. (2019). Implementasi Model Pembelajaran Creative Problem-Solving (CPS) Untuk Meningkatkan Kemampuan Pemecahan Masalah Mahasiswa. Jurnal Derivat: Jurnal Matematika dan Pendidikan Matematika, 5(1), 69–81. https://doi.org/10.31316/j.derivat.v5i1.149
Setyadin, A. H., Efendi, R., & Samsudin, A. (2019). Adaptasi instrumen tes kreativitas ilmiah adaptasi instrumen tes kreativitas ilmiah Hu dan Adey sebagai alternatif untuk mengukur kreativitas dalam konteks sains. Prosiding Seminar Nasional Fisika, 5(March), 23–31.
Sidek, R., Halim, L., Buang, N. A., & Mohamad Arsad, N. (2020). Fostering scientific creativity in teaching and learning science in schools: A systematic review. Jurnal Penelitian dan Pembelajaran IPA, 6(1), 13. https://doi.org/10.30870/jppi.v6i1.7149
Suyidno, S., Susilowati, E., Arifuddin, M., Misbah, M., Sunarti, T., & Dwikoranto, D. (2019). Increasing students responsibility and scientific creativity through creative responsibility based learning. Jurnal Penelitian Fisika Dan Aplikasinya (JPFA), 9(2), 178-188.
Thayyib, S. (2019). Improving of creative thinking and learning outcomes physics through creative problem-solving (cps) approaches. Edumaspul - Jurnal Pendidikan, 3(1), 20–27. https://doi.org/10.33487/edumaspul.v3i1.77
Wicaksono, I., Wasis, & Madlazim. (2017). The effectiveness of virtual science teaching model (VS-TM) to improve student’s scientific creativity and concept mastery on senior high school physics subject. Journal of Baltic Science Education, 16(4), 549–561. https://doi.org/10.33225/jbse/17.16.549
DOI: http://dx.doi.org/10.20527/bipf.v12i1.17668
Article Metrics
Abstract view : 361 timesPDF - 377 times
Refbacks
- There are currently no refbacks.
Indexed by:
The journal has been listed in:
Statistics Counter
1. From August 10, 2016 to present (broken code but the stats is still working)
2. From December 28, 2018 to present (updated stats)
Berkala Ilmiah Pendidikan fisika is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License