Five-Tier Geometrical Optics Test Feasibility to Identify Misconception and the Causes in High School Students

Farah Salmadhia, Heni Rusnayati, Winny Liliawati


This research aimed to test the feasibility of a geometrical optics instrument to identify the misconception and its causes. The instruments used in this research were question validation sheet and five-tier geometrical optics test (FIGOT) with 14 items of questions and consisted of 48 concepts tested. FIGOT obtained from the existing four-tier test research before which was then modified by adding one more tier about the causes of misconception. FIGOT validated by six experts, in which one the aspect assessed was the suitability of the items with alternative conceptions.  The analysis of construct validity tested using CVR (almost all items have a CVRAverage value of ≥ 0.67) and the reliability was using Cronbach’s Alpha (r ≥ 0.62 for each or both tier). The identification results processed using CDQ (Confidence Discrimination Quotient). The study was conducted in two public high schools located in Bandung and two public high schools located in Jakarta with 109 students (34 males and 75 females). The result showed that most senior high school students still experienced misconceptions related to the topic of geometrical optics, 17 misconceptions from 48 concepts about geometrical optics. The biggest percentage was 81% and CPM (Confidence of Percentage Misconception) was 4,75 about plane mirror. The most dominant causes of misconception in the material of geometrical optics were due to teachers, school books, and internet. The results of the FIGOT feasibility test showed that the items of questions were possible to use to identify misconceptions and the causes of misconceptions on optical geometry.



Five-Tier Geometrical Optics Test (FIGOT); Instrument Feasibility; Misconception; The Causes of Misconception

Full Text:



Agnes, D., Kaniawati, I., & Danawan, A. (2015). Analisis deskriptif tes tiga tingkat materi optika geometri dan alat optik. In Prosiding Simposium Nasional Inovasi dan Pembelajaran Sains (SNIPS) (pp. 597–600).

Anam, R. S., Widodo, A., Sopandi, W., & Wu, H. K. (2019). Developing a five-tier diagnostic test to identify students’ misconceptions in science: an example of the heat transfer concepts. Journal Elementary Education Online, 18(3), 1014–1029.

Caleon, I. S., & Subramaniam, R. (2010). Do students know what they know and what they dont know? using a four-tier diagnostic test to assess the nature of students alternative conceptions. Springer Science, 40, 313–337.

Caleon, I., & Subramaniam, R. (2010). Development and application of a three-tier diagnostic test to assess secondary students’ understanding of waves. International Journal of Science Education, 32(7), 939–961.

Fariyani, A. R. Q. (2015). Pengembangan four-tier diagnostic test untuk mengungkap miskonsepsi fisika siswa sma kelas x. Journal of Innovative Science Education.

Hye‐Eun Chu, D. F. (2009). A stratified study of students’ understanding of basic optics concepts in different contexts using two‐tier multiple‐choice items. Research in Science & Technological Education, 27(3), 253–265.

Kaltakci-Gurel, A. E. D. (2017). Development and application of a four-tier test to assess pre-service physics teachers’ misconceptions about geometrical optics. Research in Science & Technological Education.

Muhammad, M., & Kusno. (2015). Analisis diagnostik kesulitan belajar mahasiswa pada mata kuliah model linier. Jurnal Nasional, 9(1).

Munawaroh, R. (2016). Identifikasi miskonsepsi siswa dan penyebabnya pada materi alat optik menggunakan three-tier multiple choice diagnostic test. Jurnal Inovasi Pendidikan Fisika, 5(2).

Rahmadani, S. (2018). Penerapan Active Learning of Optics and Photonics (ALOP) Berbantuan Simulasi Komputer untuk Mengurangi Miskonsepsi Siswa Kelas XI di Bandung. Universitas Pendidikan Indonesia.

Saputri, D. F., & Nurussaniah. (2015). Penyebab Miskonsepsi pada Optika Geometris. In SNF UNJ.

Sheftyawan, W. B., Prihandono, T., & Lesmono, A. D. (2018). Identifikasi miskonsepsi siswa menggunakan four-tier diagnostic test pada materi optik geometri. Jurnal Pembelajaran Fisika, 7(2), 147–153.

Singh, K. (2007). Quantitative Social Research Methods. New Delhi: Vivek Mehra for Sage Publications India Pvt Ltd.

Sudjana, N., & Ibrahim. (1989). Penelitian dan Penelitian Pendidikan. Bandung: Sinar Baru.

Sugiyono. (2016). Penelitian dan Pengembangan. (M. S. S. Y. Suryandari, Ed.) (2nd ed.). Bandung: Alfabeta.

Sumintono, B., & Widhiarso, W. (2015). Aplikasi Pemodelan Rasch pada Assesment Pendidikan. Cimahi: Trim Komunikata.

Suparno, P. (2013). Miskonsepsi &Perubahan Konsep Pendidikan Fisika. Jakarta: Gramedia Widiasrana Indonesia.

Susanti, D. (2014). Penyusunan instrumen tes diagnostik miskonsepsi fisika sma kleas xi pada materi usaha dan energi. Jurnal Pendidikan Fisika, 2(2), 16–19.

Taslidere, E., & Eryilmaz, A. (2015). Assessment of pre-service teachers’ misconceptions in geometrical optics via a three-tier misconception test. Bartin University Journal of Faculty of Education, 4(1), 269–289.

Wiersma, W., & Jurs, S. G. (2009). Research Methods in Education an Introduction. USA: Pearson Education, Inc.

Wilson, F., Pan, W., & Schumsky, D. A. (2012). Recalculation of the critical values for Lawshe’s conten validity ratio. Measurement and Evaluation in Counseling and Development, 197–210.


Article Metrics

Abstract view : 143 times
PDF - 127 times


  Indexed by:


The journal has been listed in:

Statistics Counter

1. From August 10, 2016 to present (broken code but the stats is still working)

visitor View My Stats

2. From December 28, 2018 to present (updated stats)

View My Stats



Flag Counter

Berkala Ilmiah Pendidikan fisika is licensed under a  Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License