Dewi Puspitasari, Andi Lukman, Muhammad Yanuar Ichrom Nahzi


      Background:. Bulk fill resin composite can be applied and light-cured to depths of 4 mms at once. Varying temperature changes in the oral cavity that  caused by the comsumption cold or hot food and beverage may  cause stress on the resin composite material resulting in restoration failure. Temperature changes at 5°C and 55ºC may decrease the mechanical properties of resin composite, one of which is the diametral tensile strength. Purpose: to analyze the thermocycling test effect using 1500 and 3000 cycles to the  diametral tensile strength value. Method: This study was purely experimental post test-only with control design. Twenty four bulk fill resin composite samples were divided into 3 groups, which are control group didn’t tested thermocycling, second group treatment were tested thermocycling 1500 cycles and third group were tested thermocycling 3000 cycles.Diametral tensile strength was tested with universal testiimg machine and analyzed by One Way Annova. Result: mean value of diametral tensile strength bulk-fill resin composite of control group 42.35± 4.08 MPa, group thermocycling 1500 cycles 42.25 ± 2.26 MPa, and group thermocycling 3000 cycles 39,98±1.84  MPa. there are no significant difference in diametral tensile strength values of bulk-fill resin composite between thermocycling test group and control group. Conclusion: Thermocycling test 1500 cycle and 3000 cycles to composite resin not altered the diametral tensile strength value.


bulk fill resin composite; diametral tensile strength; thermocycling test.

Full Text:



Alrahlah A. Diametral Tensile Strength, Flexural Strength, and Surface Microhardness of Bioactive Bulk Fill Restorative. J Contemp Dent Pract 2018;19(1):13-19

Alkhudhairy FI. The effect of curing intensity on mechanical properties of different bulk-fill composite resins. Clin Cosmet Investig Dent. 2017; 9: 1–6.

Gouveia THN, Theobaldo JD, Vieira-Junior WF, Lima DANL, Aguiar FHB. Esthetic smile rehabilitation of anterior teeth by treatment with biomimetic restorative materials: a case report. Clinical, Cosmetic and Investigational Dentistry 2017:9 27-31.

Cetin AR, Unlu N, Cobanoglu N. A Five-Year Clinical Evaluation of Direct Nanofilled and Indirect Composite Resin Restorations in Posterior Teeth. Operative Dentistry: March/April 2013, Vol. 38, No. 2, pp. E31-E41.

Nandini S. Indirect resin composites. J Conserv Dent 2010;13:184-94

Putriyanti F, Herda E, Soufyan A. Pengaruh saliva buatan terhadap diametral tensile strength micro fine hybrid resin composite yang direndam dalam minuman isotonic. Jurnal PDGI. 2012; 61 (1): 43-7

Ajaj RA. Relative Microhardness and Flexural Strength of Different Bulk Fill Resin Composite Restorative Materials. Journal of American Science. 2015; 11 (7): 155-6

Abouelleit H, Pradelle N, Villat C, Attik N, Colon P, Grosgogeat B. Comparison of Mechanical Propertis of a New Fiber Reinforced Composite and Bulk Filling Composites. Journal of Restorative Dentistry and Endodontics. 2015; 40 (4): 262-1

McCabe JF, Angus WG. Walls. Bahan Kedokteran Gigi. Edisi 9. Jakarta: EGC. 2008. hal. 207-9

Morresi AL, D’amario M, Capogreco M, et al. Review Article : Thermal cycling for restorative materials : Does a standardized protocol exist in laboratory testing ? A literature review. Jornal of the mechanical behavior of biomedical materials. 2014; 29: 295 – 308

Morresi AL, D’Amario M, Monaco A, et al. Effects of critical thermal cycling on the flexural strength of resin composites. Journal of Oral Science. 2015; 57 (2): 137-43

Rehman A, Amin F, Abbas M. Diametral tensile strength of two dental composites when immersed in ethanol, distilled water and artificial saliva. JPMA. 2014; 64:1250-51

Bona AD, Paula Benetti P, Borba M, Cecchetti D. Flexural and diametral tensile strength of composite resins. Braz Oral Res 2008;22(1):84-9.

Scientific documentation Tetric N-Ceram Bulk-Fill. Ivoclar Vivadent. 2014. p. 4-5, 10-2

Casselli DSM, Worschech CC; Paulillo LAMS, Dias CTS. Diametral tensile strength of composite resins submitted to different activation techniques. Brazilian Oral Research. 2006; 20(3) : 214-218

Yilmaz E. Cetin and Sadeler R. Effect of Thermal Cycling and Microhardness on Roughness of Composite Restorative Materials. Journal of Restorative Dentistry. 2016; 4 (3): 93-6

Tuncer S, Demirci M, Tiryaki M, et al. The effect of a modeling resin and thermocycling on the surface hardness, roughness, and color of different resin composites. Journal of Esthetic and Restorative Dentistry. 2013; 25 (6): 404–19

Sakaguchi RL, Powers JM. Craig’s restorative dental material. 13th ed. St. Louis, Mo: Elsevier/Mosby. 2012. p. 235-6

Koin PJ, Killislioglu A, Zhou M, et al. Analysis of the degradation o a model dental composite. J Dent Res. 2008; 87 (7): 61-5

De Munck J., Van Landuyt K., Peumans M., Poitevin., A. Lambrecht P. A. Critical Review of the Durability of Adhesion to Tooth Tissue : Methods and Results. J Dent Research. 2005 84 (2): 118-29

Medeiros IS, Gomes MN, Loguercio AD, Filho LER. Diametral tensile strength and Vickers hardness of a composite after storage in different solutions. Journal of oral science, vol 49, no 1 61-66, 2007

Dos Santos PH, Catelan A, Guedes APA, et al. Effect of thermocycling on rougness of nanofill, microfill and microhybrid composites. Acta Odontologica Scandinavica. 2015; 73: 176-81

Oliviera JC, Aille G, Mendes B, et al. Effect of storage in water and thermocycling on hardness and rougness of resin material for temporary restorations. Material Research. 2010; 13 (3): 355-59

Article Metrics

Abstract view : 787 times
PDF - 69 times


  • There are currently no refbacks.


Contact Us:
Faculty of Dentistry
Lambung Mangkurat University
Jalan Veteran No. 128 B Banjarmasin, Indonesia
Telp/Fax. (0511) 3255444;

E-mail. /


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.