BIOCOMPABILITY TEST OF HARUAN FISH (Channa striata) BONE HYDROXYAPATITE TO FIBROBLAST CELL AS PERIODONTAL POCKET THERAPY (In Vitro Study on BHK-21 Fibroblast Cell with Hydroxyapatite of Haruan Fish Bone (Channa striata) as Bone Graft Material)
Abstract
Background: Periodontitis is an inflammation of the soft tissues and hard tissues that support the tooth characterized by periodontal pocket formation, recession to resorption of alveolar bone. So far, alveolar bone resorption caused by periodontitis can be treated with bone graft therapy. Xenograft is a type of bone graft that has many advantages such as can be obtained from natural materials, low in price and has minimal virus transmission. Hydroxyapatite of haruan fish bone is a type of xenograft material that has never been applied in medical field. Objective: This study aims to analyze the biocompatibility of haruan fish bone hydroxyapatite (Channa striata) against BHK-21 fibroblast cells via viability. Method: This was a laboratory experimental study with posttest only control group design, using MTT assay method and BHK-21 fibroblast cell viability was calculated using optical density formula. Results: The concentrations of 0,2109 mg/ml, 0,4218 mg/ml 0,8437 mg/ml, 1,6875 mg/ml, 3,3375 mg/ml and 6,75 mg/ml were biocompatible against fibroblast cells BHK-21 whereas at concentrations of 54 mg/ml, 27 mg/ml and 13,5 mg/ml were toxic to BHK-21 fibroblast cells. One Way Anova test and Bonferroni test showed concentrations of 54 mg/ml, 27 mg/ml and 13,5 mg/ml had significant differences to other concentrations. Conclusion: Hydroxyapatite of haruan fish bone (Channa striata) at some concentration is biocompatible against BHK-21 fibroblast cells.
Keywords
Full Text:
PDFReferences
Newman, Takei, Klokkevold, Carranza. Clinical Periodontology.12th ed. Canada: Julie Eddy; 2015. p. 50-2.
Tanna NK, Marjorie K, Jeffcoat. Actonel Risedronate Therapy for the Maintenance of Alveolar Bone in Adult Chronic Periodontitis. 2013;5(7):12-17.
Rustam A, Tatengkeng F, Fahruddin AM, Djas AI. Kombinasi Perancah Silk-Fibroin dari Kepompong Ulat Sutera Bombyx Mori dan Konsentrat Platelet Sebagai Inovasi Terapi Regenerasi Tulang Alveolar. 2017; 6 (3): 107-115.
Fadhilah N, Irhamni, Jalil Z. Sintesis Hidroksiapatit yang Berasal dari Tulang Sapi Aceh. Journal Of Aceh Phisics Society (JAcPS). 2016; 5 (2): 19-21.
Hienz SA, Paliwal S, Ivanovski S. Mechanisms of Bone Resoption in Periodontitis. Hindawi Publishing Corporation. 2015; 1 (15): 1-10.
Cahaya C, Masulili SL. Perkembangan Terkini Membran Guided Tissue Regeneration. 2015;1 (1):1-11.
Ardhiyanto HB. Stimulasi Osteoblas Oleh Hidroksiapatit Sebagai Material Bone Graft Pada Proses Penyembuhan Tulang. Stomatognatic (J.K.G Unej). 2012; 9 (3): 162-4.
Mao T, KamakshiV. Bone Graft and Bone Substitutes. International Journal of Pharmacy and Pharmaceutical Sciences. 2013; 6 (2): 88-91.
Dewi PS. Penatalaksanaan Kerusakan Tulang Pasca Pencabutan dengan Teknik Bone Grafting. 2012; 2 (5): 1-5.
Kandwal A, Bhardwaj J, Sunny, Batra M. Bone Graft in Periodontal Surgery. Journal of Dental Herald. 2014;1 (3): 030-2.
Singh J, Takhar RK, Bhatia A, Goel A. Bone Gaft Materials: Dental Aspects. International Journal of Novel Research in Healhcare and Nursing. 2016; 3 (1): 99-103.
Jamjoom A, Cohen R E. Graft for Ridge Preservation. Journal of Functional Biomaterials. 2015; 6 (3): 833-48.
Cucikonada Y, Supriadi A, PurwantoB. Pengaruh Perbedaan Suhu Perebusan dan Konsentras NaOH Terhadap Kualitas Bubuk Tulang Ikan Gabus (Channa striata). 2012; 1 (1): 91-101.
Apriasari ML, Adhani R, Savitri D. Uji Sitotoksisitas Ekstrak Metanol Batang Pisang Mauli (Musa sp) Terhadap Sel Fibroblas BHK Baby HamsterKidney 21. J Dentino. 2014; 2 (2): 210-14.
Asfar M, Tawali AB, Mahendradatta M. SNTI-B13 Potensi Ikan Gabus (Channa striata) Sebagai Sumber Makanan Kesehatan-Review. Seminar Nasional Teknologi Industri II. ISBN: 978-602-14822-1-6; 2014. p. 150-4.
Mustafa N, Ibrahim M, Asmawi R. Hidroxyapatite Extracted From Waste Fish Bones and Scales via Calcination Method. 2015; 773 (774): 287-290.
Agustin R, Dewi N, Rahardja SD. Efektivitas Ekstrak Ikan Haruan (Channa striata) dan Ibu Profen Terhadap Jumlah Sel Neutrofil Pada Proses Penyembuhan Luka. J Dentino. 2016; 1 (1): 68-74.
Tangalayuk RR, SuarsanaIN, Utama IH. Kadar Kalsium dan Fosfor Pada Tulang Tikus Betina yang Diberi Tepung Tempe Rendah Lemak.Buletin Veteriner Udayana. 2015; 1 (7): 59-65.
Tua B, Amri A, Zultiniar. Sintesis dan Karakterisasi Hidroksiapatit dari Cangkang Kerang Darah dengan Proses Hidrotermal Variasi Suhu dan PH.Jom FTEKNIK. 2016; 3 (2): 1-5.
Fitriawan M, Amalia SR, Saputra BA, Setyawati E, Yulianto A, Mahardika. Sintesis Hidroksiapatit Berbahan DasarTulang Sapi dengan Metode Pretipitasi sebagai Kandidat Pengganti Graft Berdasarkan Copressive Strength. Seminar Nasional Fisika. ISBN 978-602-1034-071-1. 1 ed; 2014. p. 318-22.
Anusavice KJ. Buku Ajar Ilmu Bahan Kedokteran Gigi. 10th ed. Jakarta: EGC; 2014. p. 62-64
Emilda Y, Budipramana E, Kuntari. Uji Toksisitas Ekstrak Bawang Putih (Allium satium) Terhadap Kultur Sel Fibroblas. Dental Journal. 2014; 47 (4): 215-19.
Sjerobabin N, Colovic B, Petrovic M. Cytotoxicity Investigation of a New Hydroxyapatite Scaffold With Improved Structural Design. 2016; 1445 (5-6): 280-87.
Bintarti TW, Izak RD, Ady J. Sintesis dan Karakterisasi Bone Graft Berbasis Hidroksiapatit dan Alginat. 2013; 2 (1): 108-25.
Kamal AF, Iskandriati D, Dilogo IH. Biocompatibility of Various Hydroxyapatite Scaffolds Evaluated By Proliferation of Rat's Bone Marrow Mesencymal Stem Cell: an In Vitro Study. Medical Journal of Indonesia. 2013; 22 (4): 202-8.
Manoj M, Subbiah R, Manglaraj D. Influence of Growth Parameters on the Formation of Hydroxyapatite (HAp) Nanostructures and Their Cell Viability Studes. Nanobiomedicine. 2016; 2 (2): 1-11.
Thrivikraman G, Madras G, Basu B. In Vitro/ In Vivo Assessment and Mechanisms of Toxicity of Bioceramic Materials and its Wear Particulates. 2014; 1 (4): 12763-81.
Rismanchian M, Khodaeian N, Bahramian L. In Vitro Comparison of Cytotoxicity of Two Bioactive Glasses in Micropowder and Nanopowder Forms. Iranian Journal of Pharmaceutical Research: IJPR. 2013; 12 (3): 437-43.
Chung JH, Kim YK, Kim KH. Synthesis, Characterization, Biocompatibility of Hydroxyapatite Natural Polymers Nanocomposites For Dentistry Application. 2014; 44 (1): 277-84.
Thomas B, Gupta K. In Vitro Biocompatibility of Hydroxyapatite added GIC: an SEM Study Using Human Periodontal Ligament Fibroblast. J Esthet Restor Dent. 2017; 29 (6): 435-41.
Mondal S, Mondal B, Dey A.Studies On Procecing and Characterization Of Hydroxyapatite Biomaterials From Different Bio Wastes. JMMC. 2012; 11 (1): 55-67.
Saleh RG, El Tokhey AO, El Guindi HM. Evaluation of Hidroxyapatite Nanoparticles With and Without Silver Nano-Particles in The Treatment Of Induced Periodontitis In Dogs. J AM Sci. 2014; 10 (12): 21-23.
Kamboj M, Harinder RA, Gupta, Comparative Evaluation Of The Efficacy Of Synthetic Microcrystalline Hydroxyapatite Bone Graft (Ostim) and Synthetic Microcristalline Hydroxyapatite Bone Graft (Osteogen) In The Teratment Of Human Periodontal Intrabony Defect. J Indian Soc Periodontal. 2016; 20 (4): 423-8.
DOI: http://dx.doi.org/10.20527/dentino.v3i2.5370
DOI (PDF): http://dx.doi.org/10.20527/dentino.v3i2.5370.g4530
Article Metrics
Abstract view : 1121 timesPDF - 1393 times
Refbacks
- There are currently no refbacks.
Contact Us:
Faculty of Dentistry
Lambung Mangkurat University
Jalan Veteran No. 128 B Banjarmasin, Indonesia
E-mail. [email protected]
Website. fkg.ulm.ac.id
This work is licensed under a Creative Commons Attribution 4.0 International License.