MODEL ADSORPSI TIMBAL (Pb) DAN SENG (Zn) DALAM SISTEM AIR-SEDIMEN DI WADUK RIAM KANAN KALIMANTAN SELATAN

Chatimatun Nisa, Utami Irawati, Sunardi Sunardi

Abstract


Logam berat merupakan unsur yang seringkali menjadi polutan utama dalam pencemaran air dan dapat membahayakan kehidupan organisme. Penelitian ini bertujuan untuk memprediksi pola perpindahan ion logam Pb dan Zn dari badan air ke sedimen berdasarkan fenomena adsorpsi isoterm di waduk Riam Kanan Kecamatan Aranio Kabupaten Banjar. Selain itu , penelitian ini diharapkan dapat memberikan informasi terhadap rona awal waduk Riam Kanan, dinamika, dan keadaan ion logam Pb dan Zn di sepanjang waduk Riam Kanan dari hulu hingga hilir. Metode yang digunakan adalah Standar Nasional Indonesia (SNI) dengan menggunakan instrumen Spektrofotometer Serapan Atom (AAS). Hasil analisis laboratorium diperoleh rata-rata kandungan Pb di air sebesar 0,0494 ppm – 0,2582 ppm, Zn sebesar 0,0002 ppm – 0,0370 ppm, sedangkan sedimen Pb sebesar 6,8311 mg/kg – 21,1756 mg/kg dan Zn 3,3778 mg/kg – 28,3522 mg/kg. Berdasarkan data percobaan ternyata perpindahan ion logam Pb dan Zn ke sedimen akan mengikuti model adsorpsi Langmuir dengan koefisien determinasi (R2) sebesar 0,8167 dan 0,8801.

 

Keywords: Model adsorpsi, logam berat (Pb dan Zn), air, sedimen


Heavy metals are often considered as main contaminant in water pollution and its highly dangerous for  living organisms in the contaminated area. The aim of this research  is to predict the movement pattern of Pb and Zn metal ions from water onto sediment in the Riam Kanan Reservoir, Aranio Sub-district, Banjar District. In addition, this study is expected to give information on the initial condition of Riam Kanan reservoir; dynamics; and the fate of Pb and Zn ions from upstream to downstream. The samples were analysed using AAS (Atomic Absorption Spectrophotometer) based on the Indonesian National Standard (SNI). Result of laboratory analysis showed that in the water, contents of metal Pb were 0.0494 ppm – 0.2582 ppm, Zn 0.0002 ppm – 0.0370 ppm. In the sediment, contents of Pb were 0.8311 mg/kg – 21.1756 mg/kg and Zn 3.3778 mg/kg – 28.3522 mg/kg. Based on the experimental data, it was found that the displacement of Pb and Zn onto sediment complies with Langmuir adsorption model where the  determination coefficient (R2) were 0.8167 and 0.8801 respectively.

 

Keywords: Adsorption model, heavy metal (Pb and Zn), water, sediment

  

Full Text:

PDF

References


Afrizal, I. 2000. Kandungan Logam Berat Cd, Pb, Cu, dan Zn dalam Air, sedimen dan beberapa Organisme Benthos di Muara Sungai Asahan, SumateraUtara. Skripsi. Jurusan Ilmu Kelautan. Fakultas Perikanan dan Ilmu Kelautan, Institut Pertanian Bogor, Bogor (tidak dipublikasikan).

Al-Harisi. 2008. Penetapan Kadar Zn dan Fe di dalam Tahu yang Dibungkus Plastik dan Daun yang Dijual di Pasar Kartasura dengan Menggunakan Metode Pengaktifan Neutron. http://etd.eprints.ums.ac.id/989/1.haspreviewThumbnailVersion/K100030155.pdf. Diakses tanggal 13 September 2011.

Amin, B. 2002. Distribusi Logam Berat Pb, Cu, dan Zn pada Sedimen di Perairan Telaga Tujuh Karimun Kepulauan Riau. Jurnal Natur Indonesia. 5(1):9-16.

Anonim, 2010. Menanggulangi Pencemaran Logam Berat. http://www.ychi.org-ychi.org. Diakses tanggal 13 September 2011.

Atkins, P.W., 1997, Kimia Fisika Jilid 2, Erlangga, Jakarta.

Badan Pusat Statistik. 2006. Data Kabupaten Banjar dalam angka. Martapura. http://Id.Banjarkab.Go.Id/Index.BPS-2006.Php. Diakses tanggal 13 September 2011.

Departemen Kehutanan. 2006. Data Dasar RTL-RLKT Sub-Sub DAS Riam Kanan. Balai Pengelolaan Daerah Aliran Sungai Barito.

Edward & Lestari. 2004. Dampak Pencemaran Logam Berat Terhadap Kualitas Air Laut dan Sumberdaya Perikanan (Studi Kasus Kematian Massal Ikan-Ikan di Teluk Jakarta). Jurnal Makara Sains. 8(2): 52-58.

EPA-Ohio, 2001, Sediment Sampling Guide and Methodologies 2nd edition, Environmental Protection Agency, state of Ohio.

Flogeac, K., E. Guilon, & M. Aplincourt. 2007. Competitive sorption of metal ions onto a north-eastern France soil. Isotherms and XAFS studies. Geoderma 139, 180-189.

Goegoen, C. and Domini, J. 2003. Appl. Geochem. 18, 457-470.

Karageorgis, A. P., N.P. Nikolaidis, H. Karamanos, & N. Skoulikidis. 2003. Water and sediment quality assessment of the Axios River and its coastal environment. Continental Shelf Research 23 1929-1944.

Knighton, A.D., 1989. River adjustment to changes in sediment load: the effects of tin mining on the Ringarooma River, Tasmania, 1875–1994. Earth Surface Processes and Landforms 14, 333–359.

Knighton, A.D., 1991. Channel bed adjustment along mine-affected rivers of northeast Tasmania. Geomorphology 4, 205–219.

Kurniawan, N. 2011. Tiap 5 Menit Ikan Mati. Banjarmasin post. 9 Agustus 2011. Hal 1 (kolom 7-8).

Mendenhall, W. & Sincich, T. 2003. Statistic for Engineering and the Sciences, Prentice-Hall International, Inc., New Jersey.

Miller, J.R., K.A. Hudson-Edwards, P.J. Lechler, D.Preston, & M.G. Macklin. 2004. Heavy metal contamination of water, soil, and produce within riverine communities of the Rio Pilcomayo basin, Bolivia. Science of the Total Environment 320: 189-209.

Obasohan, E. E. 2008. Bioaccumulation of Chromium, Copper, Manganese, Nickel and Lead in a Freshwater Cichlid, Hemichromis fasciatus from Ogba River in Benin City, Nigeria. African Journal of General Agriculture. 4(3):30-36.

Oscik, J. 1982. Adsorption. Ellis Horwood Limited, England.

Schnoor, J. 1996. Environmental Modelling. John Wiley &Son,Inc. New York.

Setiabudi, B.T. 2005., D. I. Yogyakarta. Subdit Konservasi-Direktorat Inventarisasi sumber Daya Mineral.

Singh, K. P., Malik, A., Sinha, S., Singh, K., Murthy, R. C., 2005, Estimation of Source of Heavy Metal Contamination in Sediments of Gomti River (India) Using Principal Component Analysis, Water, Air, and Soil Polution (Springer), Vol 166, pp. 321-341.

SNI 06-6992.3-2004. Cara Uji timbal (Pb) secara Destruksi Asam dengan Spektrofotometer Serapan Atom (SSA). Badan Standardisasi Nasional. Jakarta.

SNI 06-6992.8-2004. Cara Uji seng (Zn) secara Destruksi Asam dengan Spektrofotometer Serapan Atom (SSA). Badan Standardisasi Nasional. Jakarta.

SNI 6989.59:2008. Metode Pengambilan Contoh Air dan Air Limbah. Badan Standardisasi Nasional. Jakarta.

SNI 6989.7:2009. Cara Uji seng (Zn) secara Spektrofotometri Serapan Atom (SSA)-Nyala. Badan Standardisasi Nasional. Jakarta.

SNI 6989.8:2009. Cara Uji timbal (Pb) secara Spektrofotometri Serapan Atom (SSA)-Nyala. Badan Standardisasi Nasional. Jakarta.

Sudarmadji, J. Mukono, & I. P. Corie. 2006. Toksikologi Logam Berat B3 dan Dampaknya terhadap Kesehatan. Bagian Kesehatan Lingkungan FKM Universitas Airlangga.

Sukarjo. 1990. Kimia Anorganik. Penerbit Rineka Cipta. Jakarta.

Susanto, D. 2011. Riam Kanan Sumber Kehidupan. http://dennymedia.wordpress.com./2011/04/30/waduk-riam-kanan. Diakses tanggal 28 Nopember 2011.

Sutamihardja, P. Deny & J. Rany. 1999. Sifat Logam Berat. BPLH. Jawa Barat. http://www.bplhdjabar.go.id/index.php.bidang-konservasi. Diakses tanggal 15 September 2011.

Taylor, M.P. 2006. Distribution and storage of sediment-associated heavy metals downstream of the remediated Rum Jungle Mine on the East Branch of the Finniss River, Northern Territory, Australia. Journal of Geochemical Exploration 92 55–72.

US-EPA, 2004, The Incidence and Severity of Sediment Contamination in Surface Waters of the United States, National Sediment Quality Survey: Second Edition, United States Environmental Protection Agency, Standards and Health Protection Division, Washington, DC 20460.

Vidal, M., M.J. Santos, T. Abrao, J. Rodriguez, & A. Rigol. 2009. Modeling Competitive metal sorption in a mineral soil. Geoderma 149 189-198.

Widowati, W., A. Sastiono, & R. Jusuf. 2008. Efek Toksik Logam: Pencegahan dan Penanggulangan Pencemaran. Penerbit Andi. Yogyakarta.

Wu, Y., R. Falconer, & B. Lin. 2005. Modelling trace metal concentration distributions in estuarine waters. Estuarine, Coastal and Shelf Science 64 699-709.

Yang, Z., Yinwang, Z. Shen, J. Niu, & Z. Tang . 2009. Distribution and speciation of heavy metals in sediments from the mainstream, tributaries, and lakes of the Yangtze River catchment of Wuhan, China. Journal of Hazardous Materials 166 1186–1194.




DOI: http://dx.doi.org/10.20527/k.v2i1.118

Article Metrics

Abstract view : 130 times
PDF - 106 times

Refbacks

  • There are currently no refbacks.


INDEXED BY:
                  
 
       

  OAI 2.0 Request Results

 
 
 
 
Konversi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

free
web stats View My Stats