Potensi Senyawa Aktif Mengkudu (Morinda citrifolia) sebagai Antifungi Candida albicans melalui Pendekatan in Silico

Khaerunissa Anbar Istiadi, Erma Suryanti, Dewi Chusniasih

Abstract


Candida albicans is a normal microbiota in humans. However, the imbalance and increasing number of C. albicans can cause infections in the vagina, mouth, esophagus, and nails. Sap-3 plays role in the infections especially in the adhesion process, and can used as a therapeutic target for C.albicans. Here an attempt has been made to analyze the potential of the active compounds from noni (Morinda citrifolia) as an antifungal by molecular docking towards Sap-3 protein. Drug-likeness characteristics were analyzed based on the Lipinski Rule of Five. Validation of molecular docking of Sap-3 protein-native ligand was conducted followed by molecular docking of the Sap3 protein-test based on the Lamarckian Genetics Algorithm. The highest binding energy is Beta-sitosterol (-8.77 kcal/mol), followed by Alizarin (-6.47 kcal/mol), Morindone (-6.51 kcal/mol), Quercetin (-5.76 kcal/mol), Pepstatin A (-5.55 kcal/mol), Scopoletin (-5.26 kcal/mol), Kaempferol (-5.13 kcal/mol). Bioactive compounds from noni (Morinda citrifolia) can be an appropriate choice as antifungal and for further experiments through in vitro and in vivo tests.

Keywords


Candida albicans; In silico; Morinda citrifolia; Molecular docking; Sap3

Full Text:

PDF

References


Abou Assi, R., Darwis, Y., Abdulbaqi, I. M., Khan, A. A., Vuanghao, L., & Laghari, M. H. (2017). Morinda citrifolia (Noni): A comprehensive review on its industrial uses, pharmacological activities, and clinical trials. Arabian Journal of Chemistry, 10, 691–707. https://doi.org/10.1016/j.arabjc.2015.06.018.

Barani, K., Manipal, S., Prabu, D., Ahmed, A., Adusumilli, P., & Jeevika, C. (2014). Anti-fungal activity of Morinda citrifolia (noni) extracts against Candida albicans: An in vitro study. Indian Journal of Dental Research, 25, 188. https://doi.org/10.4103/0970-9290.135918.

Borelli, C., Ruge, E., Schaller, M., Monod, M., Korting, H. C., Huber, R., & Maskos, K. (2007). The crystal structure of the secreted aspartic proteinase 3 from Candida albicans and its complex with pepstatin A. Proteins: Structure, Function, and Bioinformatics, 68, 738–748. https://doi.org/10.1002/prot.21425.

Borroto, J., Salazar, R., Pérez, A., Quiros, Y., Hernandez, M., Waksman, N., & Trujillo, R. (2010). Antimicrobial activity of the dichloromethane extract from in vitro cultured roots of Morinda royoc and its main constituents. Natural Product Communications, 5, 809–810. https://doi.org/10.1177/1934578x1000500526.

d’Enfert, C., Kaune, A.-K., Alaban, L.-R., Chakraborty, S., Cole, N., Delavy, M., Kosmala, D., Marsaux, B., Fróis-Martins, R., Morelli, M., Rosati, D., Valentine, M., Xie, Z., Emritloll, Y., Warn, P. A., Bequet, F., Bougnoux, M.-E., Bornes, S., Gresnigt, M. S., Brown, A. J. P. (2021). The impact of the Fungus-Host-Microbiota interplay upon Candida albicans infections: current knowledge and new perspectives. FEMS Microbiology Reviews, 45. https://doi.org/10.1093/ femsre/fuaa060.

Duval, J., Pecher, V., Poujol, M., & Lesellier, E. (2016). Research advances for the extraction, analysis and uses of anthraquinones: A review. Industrial Crops and Products, 94, 812–833. https://doi.org/10.1016/j.indcrop.2016.09.056.

Fadilah, F., Yanuar, A., Arsianti, A., Andrajati, R., & Purwaningsih, E. H. (2017). In Silico Study of Aryl Eugenol Derivatives as Anti-Colorectal Cancer by Inducing of Apoptosis. Asian Journal of Pharmaceutical and Clinical Research, 10, 345. https://doi.org/10.22159/ajpcr.2017.v10i12.21233.

Gilson, M. K., Given, J. A., Bush, B. L., & McCammon, J. A. (1997). The statistical-thermodynamic basis for computation of binding affinities: a critical review. Biophysical Journal, 72, 1047–1069. https://doi.org/10.1016/S0006-3495(97) 78756-3.

Gohlke, H., Hendlich, M., & Klebe, G. (2000). Knowledge-based scoring function to predict protein-ligand interactions. Journal of Molecular Biology, 295, 337–356. https://doi.org/10.1006/jmbi.1999.3371.

Hardani, R., Krisna, I. K. A., Hamzah, B., & Hardani, M. F. (2020). Uji Anti Jamur Ekstrak Buah Mengkudu (Morinda citrifolia L.). Jurnal IPA & Pembelajaran IPA, 4, 92–102. https://doi.org/10.24815/jipi.v4i1.16579.

Holanda, L., Bezerra, G. B., & Ramos, C. S. (2020). Potent Antifungal Activity of Essential Oil from Morinda citrifolia Fruits Rich in Short-chain Fatty Acids. International Journal of Fruit Science, 20, S448–S454. https://doi.org/10.1080/ 15538362.2020.1738975.

Jeyabalan, S., Subramanian, K., Maheswara, U., Cheekala, R., & Krishnan, C. (2017). GC-MS analysis and in-silico antipsychotic activity of Morinda citrifolia (Indian Noni). Journal of Applied Pharmaceutical Science. https://doi.org/10.7324/JAPS.2017.70412.

Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling. https://doi.org/10.1021/ci200227u.

Lipinski, A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Delivery Rev., 23, 25.

Lipinski, C. A. (2004). Lead- and drug-like compounds: the rule-of-five revolution. Drug Discovery Today: Technologies, 1, 337–341. https://doi.org/10.1016/ j.ddtec.2004.11.007.

Lopes, J. P., & Lionakis, M. S. (2022). Pathogenesis and virulence of Candida albicans. Virulence, 13, 89–121. https://doi.org/10.1080/21505594.2021. 2019950.

Matter, H., & Güssregen, S. (2018). Characterizing hydration sites in protein-ligand complexes towards the design of novel ligands. Bioorganic & Medicinal Chemistry Letters, 28, 2343–2352. https://doi.org/10.1016/j.bmcl.2018.05.061.

Mayer, F. L., Wilson, D., & Hube, B. (2013). Candida albicans pathogenicity mechanisms. Virulence, 4, 119–128. https://doi.org/10.4161/viru.22913.

Megawati, A., & Wahyuni, I. S. (2021). Potential of Herbal Medicine in Asia for Oral Candidiasis Therapy: a Systematic Review. International Journal of Applied Pharmaceutics, 13, 1–6. https://doi.org/10.22159/IJAP.2021.V13S4.43794.

Morris, G. M., Goodsell, D. S., Halliday, R., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated Docking Using a Lamarckian Genetic Algorithm and Empirical Binding Free Energy Function. J. Comput. Chem., 19, 1662.

Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). Autodock4 and AutoDockTools4: automated docking with selective receptor flexiblity. J. Computational Chemistry, 16, 2785–2791.

Naglik, J., Albrecht, A., Bader, O., & Hube, B. (2004). Candida albicans proteinases and host/pathogen interactions. Cellular Microbiology, 6, 915–926. https://doi.org/10.1111/j.1462-5822.2004.00439.x.

Nusantoro, Y. R., & Fadlan, A. (2020). Analisis Sifat Mirip Obat, Prediksi ADMET, dan Penambatan Molekular Isatinil-2-Aminobenzoilhidrazon dan kompleks logam transisi Co(II), Ni(II), Cu(II), Zn(II) Terhadap BCL2-XL. Akta Kimia Indonesia, 5, 114. https://doi.org/10.12962/j25493736.v5i2.7881.

O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3, 33. https://doi.org/10.1186/1758-2946-3-33.

Owoloye, A. J., Ligali, F. C., Enejoh, O. A., Musa, A. Z., Aina, O., Idowu, E. T., & Oyebola, K. M. (2022). Molecular docking, simulation and binding free energy analysis of small molecules as PfHT1 inhibitors. PLOS ONE, 17, e0268269. https://doi.org/10.1371/journal.pone.0268269.

Pappas, P. G., Lionakis, M. S., Arendrup, M. C., Ostrosky-Zeichner, L., & Kullberg, B. J. (2018). Invasive ucandidiasis. Nature Reviews Disease Primers, 4, 18026. https://doi.org/10.1038/nrdp.2018.26.

Schaller, M., Krnjaic, N., Niewerth, M., Hamm, G., Hube, B., & Korting, H. C. (2003). Effect of antimycotic agents on the activity of aspartyl proteinases secreted by Candida albicans. Journal of Medical Microbiology, 52, 247–249. https://doi.org/10.1099/jmm.0.05048-0.

Silva, D. R., Sardi, J. de C. O., Freires, I. A., Silva, A. C. B., & Rosalen, P. L. (2019). In silico approaches for screening molecular targets in Candida albicans: A proteomic insight into drug discovery and development. European Journal of Pharmacology, 842, 64–69. https://doi.org/10.1016/j.ejphar.2018.10.016.

Simatupang, O. C., Abidjulu, J., & Siagian, K. V. (2017). Uji daya hambat ekstrak daun mengkudu (Morinda citrifolia L.) terhadap pertumbuhan Candida albicans secara in vitro. E-GIGI, 5. https://doi.org/10.35790/eg.5.1.2017.14701.

Singh, M., Singh, S., Salgar, A. R., Prathibha, N., Chandrahari, N., & Swapna, L. A. (2019). An In Vitro Comparative Evaluation of Antimicrobial Efficacy of Propolis, Morinda Citrifolia Juice, Sodium Hypochlorite and Chlorhexidine on Enterococcus faecalis and Candida albicans. The Journal of Contemporary Dental Practice, 20, 40–45. https://doi.org/10.5005/jp-journals-10024-2473.

Soliman, S.S.M., Semreen, M.H., El-Keblawy, A. A., Abdullah, A., Uppuluri, P., & Ibrahim, A. S. (2017). Assessment of herbal drugs for promising anti-Candida activity. BMC Complementary and Alternative Medicine, 17, 1–9. https://doi.org/10.1186/s12906-017-1760-x.

Sumolang, D., Pontoh, J., & Abidjulu, J. (2018). Analisis Komponen Kimia pada Berbagai Tingkat Umur Buah Mengkudu (Morinda citrifolia L) Menggunakan Kromatografi Gas. Jurnal Ilmiah Farmasi, 7, 71–78.

Talapko, J., Juzbašić, M., Matijević, T., Pustijanac, E., Bekić, S., Kotris, I., & Škrlec, I. (2021). Candida albicans—The Virulence Factors and Clinical Manifestations of Infection. Journal of Fungi, 7, 79. https://doi.org/10.3390/jof7020079.

Tocci, N., Perenzoni, D., Iamonico, D., Fava, F., Weil, T., & Mattivi, F. (2018). Extracts from Hypericum hircinum subsp. majus exert antifungal activity against a panel of sensitive and drug-resistant clinical strains. Frontiers in Pharmacology, 9, 1–10. https://doi.org/10.3389/fphar.2018.00382.

Yanuar, A., Mun’im, A., Lagho, A. B. A., Syahdi, R. R., Rahmat, M., & Suhartanto, H. (2011). Medicinal Plants Database and Three Dimensional Structure of the Chemical Compounds from Medicinal Plants in Indonesia. 8, 180–183. http://arxiv.org/abs/1111.7183.

Zheng, L., Meng, J., Jiang, K., Lan, H., Wang, Z., Lin, M., Li, W., Guo, H., Wei, Y., & Mu, Y. (2022). Improving protein–ligand docking and screening accuracies by incorporating a scoring function correction term. Briefings in Bioinformatics, 23. https://doi.org/10.1093/bib/bbac051.




DOI: http://dx.doi.org/10.20527/wb.v15i1.15883

Article Metrics

Abstract view : 913 times
PDF - 745 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Wahana-Bio Journal is abstracting & indexing in the following databases:   


Collaborate with:


Managed by:

Program of Biology Education, Mathematics and Natural Science Education, Faculty of Teacher Training and Education, Universitas Lambung Mangkurat

Brigjen H. Hasan Basri, Kayu Tangi, Banjarmasin, Indonesia, Telp/Fax: (0511) 3304914, Mail Box 70123 No. HP: 081255118112

Email: [email protected], Website: https://ppjp.ulm.ac.id/journal/index.php/wb

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.