Vegetation Change Detection Analysis Using Multi-sensor Hyperspectral Imagery

Wahyu Ananta Nugraha, Pramaditya Wicaksono, Sanjiwana Arjasakusuma

Abstract


Vegetation is a fundamental component of ecosystems that maintains carbon levels, hydrological cycles, mitigating greenhouse gases, and ensures climate stability. In recent years, the impacts of global climate change have led to changes in vegetation cover at various levels. Efforts to monitor changes in vegetation are important and beneficial for various fields such as forest monitoring, agriculture, and plantations, among others. The main objective of this research is to detect changes both increase and decrease in vegetation using multi-sensor hyperspectral imagery. The hyperspectral images used in this study are Hyperion 2014 and PRISMA 2021. The method involves creating different levels of spectral resolution simulations from hyperspectral images to detect vegetation changes. Meanwhile, the vegetation change Clustering method employs unsupervised (k-means) techniques. The cluster results can indicate vegetation changes such as vegetation degradation, vegetation, devegetation, or no change, though they currently have low accuracy. The highest accuracy is by Simulated RapidEye image simulations, is 33.5%. The low accuracy results attributed insufficient preprocessing, particularly in topographic correction. Additionally, this research indicates that the spectral resolution levels do not have a significant impact on vegetation change detection, as the differences in change classes at each level are very small.


Keywords


Change Detection; Hyperspectral; CVA; k-means

Full Text:

PDF

References


Ayuningtyas, E. A. (2022). Pemetaan Partisipatif untuk Bahaya Longsor dan Jalur Evakuasi di Desa Hargomulyo, Kabupaten Kulonprogo, DIY. Jurnal Geografika (Geografi Lingkungan Lahan Basah), 3(2), 78-91. https://doi.org/10.20527/jgp.v3i2.6789

Cavalli, R. M. (2023). The Weight of Hyperion and PRISMA Hyperspectral Sensor Characteristics on Image Capability to Retrieve Urban Surface Materials in the City of Venice. Sensors, 23 (1). https://doi.org/10.3390/s23010454

Celik, T. (2009). Unsupervised change detection in satellite images using principal component analysis and κ-means clustering. IEEE Geoscience and Remote Sensing Letters, 6 (4), 772–776. https://doi.org/10.1109/LGRS.2009.2025059

Chughtai, A.H., Abbasi, H., & Karas, I.R. (2021). A review on change detection method and accuracy assessment for land use land cover. Remote Sensing Applications: Society and Environment, 22 (March), 100482. https://doi.org/10.1016/j.rsase.2021.100482

Chunhui, Z., Bing, G., Lejun, Z., & Xiaoqing, W. (2018). Classification of Hyperspectral Imagery based on spectral gradient, SVM ,and spatial random forest. Infrared Physics and Technology, 95 (January), 61–69. https://doi.org/10.1016/j.infrared.2018.10.012

El Abbassi, M., Overbeck, J., Braun, O., Calame, M., van der Zant, HSJ, & Perrin, M.L. (2021). Benchmark and application of unsupervised classification approaches for univariate data. Communications Physics, 4 (1), 1–9. https://doi.org/10.1038/s42005-021-00549-9

Fang, L., He, N., Li, S., Plaza, A. J., & Plaza, J. (2018). A New Spatial-Spectral Feature Extraction Method for Hyperspectral Images Using Local Covariance Matrix Representation. IEEE Transactions on Geoscience and Remote Sensing, 56 (6), 3534–3546. https://doi.org/10.1109/TGRS.2018.2801387

Fang, Y., Zhao, J., Liu, L., & Wang, J. (2020). Comparison of eight topographic correction algorithms applied to Landsat-8 oil imagery based on the dem. IOP Conference Series: Earth and Environmental Science, 428 (1). https://doi.org/10.1088/1755-1315/428/1/012051

Ghamisi, P., Plaza, J., Chen, Y., Li, J., & Plaza, A. J. (2017). Advanced Spectral Classifiers for Hyperspectral Images: A review. IEEE Geoscience and Remote Sensing Magazine, 5 (1), 8–32. https://doi.org/10.1109/MGRS.2016.2616418

Ghamisi, P., Yokoya, N., Li, J., Liao, W., Liu, S., Plaza, J., Rasti, B., & Plaza, A. (2017). Advances in Hyperspectral Image and Signal Processing: A Comprehensive Overview of the State of the Art. In IEEE Geoscience and Remote Sensing Magazine (Vol. 5, Issue 4, pp. 37–78). https://doi.org/10.1109/MGRS.2017.2762087

Ghosh, S., Patra, S., & Ghosh, A. (2009). An unsupervised context-sensitive change detection technique based on modified self-organizing feature map neural network. International Journal of Approximate Reasoning, 50 (1), 37–50. https://doi.org/10.1016/j.ijar.2008.01.008

González-González, A., Villegas, J.C., Clerici, N., & Salazar, J.F. (2021). Spatial-temporal dynamics of deforestation and its drivers indicate the need for locally adapted environmental governance in Colombia. Ecological Indicators, 126. https://doi.org/10.1016/j.ecolind.2021.107695

Hasanlau, M., & Seydi, ST (2018). Sensitivity analysis on the performance of different unsupervised threshold selection methods in hyperspectral change detection. 2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing, PRRS 2018, 6–9. https://doi.org/10.1109/PRRS.2018.8486355

Jensen, J.R. (2013a). Remote Sensing of the Environment: An Earth Resource Perspective: Pearson New International Edition. Pearson Education. https://books.google.co.id/books?id=fhGpBwAAQBAJ

Jensen, J.R. (2013b). Remote Sensing of the Environment: An Earth Resource Perspective: Pearson New International Edition. Pearson Education.

Khan, M.J., Khan, H.S., Yousaf, A., Khurshid, K., & Abbas, A. (2018). Modern Trends in Hyperspectral Image Analysis: A Review. IEEE Access, 6 (June), 14118–14129. https://doi.org/10.1109/ACCESS.2018.2812999

Kuzera, K., Rogan, J., & Eastman, J.R. (nd). Monitoring Vegetation Regeneration and Deforestation Using Change Vector Analysis: Mt. St. Helens Study Area.

Lehnert, L.W., Meyer, H., Obermeier, W.A., Silva, B., Regeling, B., & Bendix, J. (2018). Hyperspectral Data Analysis in R: the hsdar Package. https://doi.org/10.18637/jss.v089.i12

Leutner, B., Horning, N., Schwalb-Willmann, J., Hijmans, R.J., & Maintainer, ]. (2019). Package “RStoolbox” Title Tools for Remote Sensing Data Analysis.

Li, H., Xu, L., Zhang, Z., Shen, H., Li, W., & Cao, L. (2015). A land cover adaptive topographic correction and evaluation method for remote sensing data. International Geoscience and Remote Sensing Symposium (IGARSS), 2015-Novem (1), 3850–3853. https://doi.org/10.1109/IGARSS.2015.7326664

Lillesand, T., Kiefer, R. W., & Chipman, J. (2015a). Remote Sensing and Image Interpretation, 7th Edition. Wiley.

Lillesand, T., Kiefer, R. W., & Chipman, J. (2015b). Remote Sensing and Image Interpretation, 7th Edition. Wiley. https://books.google.co.id/books?id=eQXYBgAAQBAJ

Liu, S. (2015). Sequential Spectral Change Vector Analysis for Iteratively Discovering and Detecting Multiple Changes in Hyperspectral Images. March. https://doi.org/10.1109/TGRS.2015.2396686

Liu, S., Bruzzone, L., Bovolo, F., & Du, P. (2012). Unsupervised hierarchical spectral analysis for change detection in hyperspectral images. Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing, June. https://doi.org/10.1109/WHISPERS.2012.6874245

Lu, D., Li, G., & Moran, E. (2014). Current situation and need for change detection techniques. International Journal of Image and Data Fusion , 5 (1), 13–38. https://doi.org/10.1080/19479832.2013.868372

Lu, D., Mausel, P., Brondízio, E., & Moran, E. (2004). Change detection techniques. International Journal of Remote Sensing, 25 (12), 2365–2401. https://doi.org/10.1080/0143116031000139863

Seydi, ST, & Hasanlou, M. (2017). A new land-cover match-based change detection for hyperspectral imagery. European Journal of Remote Sensing , 50 (1), 517–533. https://doi.org/10.1080/22797254.2017.1367963

Sinaga, KP, & Yang, MS (2020). Unsupervised K-means clustering algorithm. IEEE Access, 8, 80716–80727. https://doi.org/10.1109/ACCESS.2020.2988796

Sun, L., Zhao, D., Zhang, G., Wu, X., Yang, Y., & Wang, Z. (2022). Using SPOT VEGETATION for analyzing dynamic changes and influencing factors on vegetation restoration in the Three-River Headwaters Region in the last 20 years (2000–2019), China. Ecological Engineering, 183 (July), 106742. https://doi.org/10.1016/j.ecoleng.2022.106742

Tripathi, M. K., Govil, H., & Diwan, P. (2019). Petrography, XRD analysis, and identification of talc minerals near Chhabadiya village of Jahajpur region, Bhilwara, India through Hyperion hyperspectral remote sensing data. 2019 2nd International Conference on Intelligent Communication and Computational Techniques, ICCT 2019, 75–78. https://doi.org/10.1109/ICCT46177.2019.8969008

Umarhadi, DA, & Danoedoro, P. (2019). Correcting topographic effect on Landsat-8 images: an evaluation of using different DEMs in Indonesia. November 2019, 41. https://doi.org/10.1117/12.2549109

Visual Information Solutions, I. (1988). FLAASH Module User's Guide 20FLA43DOC. http://www.csie.ntu.edu.tw/~cjlin/libsvm

Wu, J. (2012). K-means Based Consensus Clustering. Springer Science & Business Media. https://doi.org/10.1007/978-3-642-29807-3_7

Zheng, Z., Wan, Y., Zhang, Y., Xiang, S., Peng, D., & Zhang, B. (2021). ISPRS Journal of Photogrammetry and Remote Sensing CLNet: Cross-layer convolutional neural network for change detection in optical remote sensing imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 175 (March), 247–267. https://doi.org/10.1016/j.isprsjprs.2021.03.005




DOI: https://doi.org/10.20527/jgp.v5i1.11709

Refbacks

  • There are currently no refbacks.

















Jurnal ini diterbitkan oleh :
Pusat Pengelolaan Jurnal dan Penerbitan (PPJP)
Universitas Lambung Mangkurat
Program Studi Geografi, Fakultas Ilmu Sosial dan Ilmu Politik
Ciptaan disebarluaskan di bawah  Lisensi Creative Commons Atribusi 4.0 Internasional .
Lisensi Creative Commons

 JGP (Jurnal Geografika: Geografi Lingkungan Lahan Basah) di Indeks Oleh :