Literasi Data dalam Pembelajaran Fisika dan Penilaian
Abstract
Pembelajaran fisika sangat terkait dengan data. Literasi data membentuk kerangka pengetahuan melalui aktivitas identifikasi data, interpretasi data, pemaknaan data, dan mengomunikasikan makna dari data. Namun demikian, prinsip-prinsip mengajarkan literasi data dan penilaiannya belum terumuskan dengan jelas. Tujuan penelitian ini adalah mengkaji dan menunjukkan prinsip-prinsip pengajaran literasi data dan penilaiannya. Penelitian ini adalah penelitian kajian pustaka dengan mengkaji artikel dari jurnal dan prosiding serta tesis terkait prinsip pembelajaran literasi data dan penilaiannya. Hasil kajian menunjukkan bahwa prinsip pengajaran dalam literasi data adalah proses pembelajaran, media dan bahan ajar, dan kemampuan peserta didik. Sementara, penilaian literasi data perlu dikaji berdasarkan aspek pengenalan data, pengumpulan dan pencatatan data, analisis data dan interpretasi, mengomunikasikan data, dan penggunaan data. Berdasarkan aspek-aspek penilaian literasi data, kemampuan literasi data dibagi menjadi literasi data tingkat dasar, literasi data tingkat menengah, dan literasi data tingkat atas
Physics learning is closely related to data. Data literacy forms the framework of scientific knowledge through data identification activities, data interpretation, the meaning of data, and communication of data meaning results. However, the principles of teaching data literacy and its assessment are still not clear enough. This research aims to reveal the principles of teaching data literacy and its assessment. This research is a literature review by reviewing articles from journals, proceedings, and theses related to the principles of data literacy learning and its assessment. The results suggest that the principles in teaching data literacy include three key aspects: learning process, media and learning materials, and student competence. Meanwhile, the assessment of data literacy needs to be reviewed from aspects of data recognition, data collection and recording, data analysis and interpretation, communication data, and data use. These aspects are divided into basic data literacy, intermediate data literacy, and upper data literacy.
Keywords
Full Text:
PDFReferences
Cook, J., Bedford, D., & Mandia, S. (2014). Raising climate literacy through addressing misinformation : Case studies in agnotology-based learning raising climate literacy through addressing misinformation : Case studies in agnotology-based learning. Journal of Geoscience Education, 62, 296–306. https://doi.org/10.5408/13-071.1
D’Ignazio, C., & Bhargava, R. (2016). DataBasic: Design principles, tools and activities for data literacy Learners. Journal of Community Informatics, 12(3), 83–107. Retrieved from http://academy.datawrapper.de/
Deahl, E. S. (2014). Better the data you know: developing youth data literacy in schools and informal learning environments. Massachusetts Institute of Technology. https://doi.org/10.2139/ssrn.2445621
E. Bruce Goldstein. (2011). Cognitive psychology: Connecting mind, research, and everyday experience. Journal of Chemical Information and Modeling (3rd ed., Vol. 53). Belmont: Wadsworth.
Gibson, J. P., & Mourad, T. (2018). The growing importance of data literacy in life science education. American Journal of Botany, 105(12), 1953–1956. https://doi.org/10.1002/ajb2.1195
Katadata Insight Center. (2020). Status literasi digital indonesia 2020 status literasi digital indonesia 2020. Jakarta: Katadata Insight Center. Retrieved from https://katadata-s3-public.s3.ap-southeast-1.amazonaws.com/media/kic/kominfo/Status Literasi Digital_Nasional.pdf
Kippers, W. B., Poortman, C. L., Schildkamp, K., & Visscher, A. J. (2018). Data literacy: What do educators learn and struggle with during a data use intervention? Studies in Educational Evaluation, 56(July 2017), 21–31. https://doi.org/10.1016/j.stueduc.2017.11.001
Law, N., Woo, D., de la Torre, J., & Wong, G. (2018). A global framework of reference on digital literacy. Montreal: UNESCO Institute for Statistic. Retrieved from http://uis.unesco.org/sites/default/files/documents/ip51-global-framework-reference-digital-literacy-skills-2018-en.pdf
Maybee, C., & Zilinski, L. (2015). Data informed learning: A next phase data literacy framework for higher education. Proceedings of the Association for Information Science and Technology, 52(1), 1–4. https://doi.org/10.1002/pra2.2015.1450520100108
Moreno, R. (2010). Educational Psychology. New Jersey: John Wiley & Sons.
Pangrazio, L., & Sefton-Green, J. (2020). The social utility of ‘data literacy.’ Learning, Media and Technology, 45(2), 208–220. https://doi.org/10.1080/17439884.2020.1707223
Qin, J., & D’ignazio, J. (2010). The central role of metadata in a science data literacy course. Journal of Library Metadata, 10(2–3), 188–204. https://doi.org/10.1080/19386389.2010.506379
Schildkamp, K., Lai, M. K., & Earl, L. (2013). Data-based decision making in education: Challenges and opportunities. Data-based Decision Making in Education: Challenges and Opportunities. https://doi.org/10.1007/978-94-007-4816-3
Srikant, S., & Aggarwal, V. (2017). Introducing Data Science to School Kids. In Proceedings of The 2017 ACM SIGCSE Technical Symposium on Computer Science Education (pp. 561–566). New York: Association for Computing Machinery.
Wolff, A., Gooch, D., Montaner, J. J. C., Rashid, U., & Kortuem, G. (2016). Creating an Understanding of Data Literacy for a Data-driven Society. Journal of Community Informatics, 12(3), 9–26.
Wolff, A., Wermelinger, M., & Petre, M. (2019). Exploring design principles for data literacy activities to support children’s inquiries from complex data. International Journal of Human Computer Studies, 129(March), 41–54. https://doi.org/10.1016/j.ijhcs.2019.03.006
DOI: https://doi.org/10.20527/jipf.v6i2.5442
Refbacks
- There are currently no refbacks.
Indexed by: Jurnal Ilmiah Pendidikan Fisika is licensed under a creative commons attribution-share alike 4.0 international license Statistics Counter |